

Vector spaces (aka linear spaces)

Manuel A. Vázquez

February 19, 2024

Vector space: definition \& addition operation

A vector/linear space is a set of elements, named vectors, with the following properties:

Vector space: definition \& addition operation

A vector/linear space is a set of elements, named vectors, with the following properties:

1. There exists an operation called addition, represented by the symbol + such that $x+y \in V$ for every $x, y \in V$, i.e.,

$$
x, y \in V \Longrightarrow x+y \in V
$$

This operation must satisfy the following properties:

Vector space: definition \& addition operation

A vector/linear space is a set of elements, named vectors, with the following properties:

1. There exists an operation called addition, represented by the symbol + such that $x+y \in V$ for every $x, y \in V$, i.e.,

$$
x, y \in V \Longrightarrow x+y \in V
$$

This operation must satisfy the following properties:
a) Commutativity: $\forall x, y \in V, x+y=y+x$

Vector space: definition \& addition operation

A vector/linear space is a set of elements, named vectors, with the following properties:

1. There exists an operation called addition, represented by the symbol + such that $x+y \in V$ for every $x, y \in V$, i.e.,

$$
x, y \in V \Longrightarrow x+y \in V
$$

This operation must satisfy the following properties:
a) Commutativity: $\forall x, y \in V, x+y=y+x$
b) Associativity: $\forall x, y, z \in V, x+(y+z)=(x+y)+z$

Vector space: definition \& addition operation

A vector/linear space is a set of elements, named vectors, with the following properties:

1. There exists an operation called addition, represented by the symbol + such that $x+y \in V$ for every $x, y \in V$, i.e.,

$$
x, y \in V \Longrightarrow x+y \in V
$$

This operation must satisfy the following properties:
a) Commutativity: $\forall x, y \in V, x+y=y+x$
b) Associativity: $\forall x, y, z \in V, x+(y+z)=(x+y)+z$
c) Identity element: $\exists 0 \in V \mid \forall x \in V, x+0=0+x=x$

Vector space: definition \& addition operation

A vector/linear space is a set of elements, named vectors, with the following properties:

1. There exists an operation called addition, represented by the symbol + such that $x+y \in V$ for every $x, y \in V$, i.e.,

$$
x, y \in V \Longrightarrow x+y \in V
$$

This operation must satisfy the following properties:
a) Commutativity: $\forall x, y \in V, x+y=y+x$
b) Associativity: $\forall x, y, z \in V, x+(y+z)=(x+y)+z$
c) Identity element: $\exists 0 \in V \mid \forall x \in V, x+0=0+x=x$
d) Inverse element: $\forall x \in V \exists(-x) \mid x+(-x)=0$

Vector space: scalar multiplication operation

2. There exists an operation called scalar multiplication that takes a scalar $\alpha \in F$ (with F being a field) and a vector $x \in V$ to yield another vector, i.e,

$$
\forall x \in V, \forall \alpha \in F \Longrightarrow \alpha x \in V
$$

This operation must satisfy the following properties:

Vector space: scalar multiplication operation

2. There exists an operation called scalar multiplication that takes a scalar $\alpha \in F$ (with F being a field) and a vector $x \in V$ to yield another vector, i.e,

$$
\forall x \in V, \forall \alpha \in F \Longrightarrow \alpha x \in V
$$

This operation must satisfy the following properties:
a) Associativity: $\forall \alpha, \beta \in F, \forall x \in V, \alpha(\beta x)=(\alpha \beta) x$

Vector space: scalar multiplication operation

2. There exists an operation called scalar multiplication that takes a scalar $\alpha \in F$ (with F being a field) and a vector $x \in V$ to yield another vector, i.e,

$$
\forall x \in V, \forall \alpha \in F \Longrightarrow \alpha x \in V
$$

This operation must satisfy the following properties:
a) Associativity: $\forall \alpha, \beta \in F, \forall x \in V, \alpha(\beta x)=(\alpha \beta) x$
b) Identity element: $\exists 1 \in F \mid \forall x \in V, 1 x=x$

Vector space: scalar multiplication operation

2. There exists an operation called scalar multiplication that takes a scalar $\alpha \in F$ (with F being a field) and a vector $x \in V$ to yield another vector, i.e,

$$
\forall x \in V, \forall \alpha \in F \Longrightarrow \alpha x \in V
$$

This operation must satisfy the following properties:
a) Associativity: $\forall \alpha, \beta \in F, \forall x \in V, \alpha(\beta x)=(\alpha \beta) x$
b) Identity element: $\exists 1 \in F \mid \forall x \in V, 1 x=x$
c) Distributivity of scalar multiplication with respect to vector addition:

$$
\forall \alpha \in F, \forall x, y \in V, \alpha(x+y)=\alpha x+\alpha y
$$

Vector space: scalar multiplication operation

2. There exists an operation called scalar multiplication that takes a scalar $\alpha \in F$ (with F being a field) and a vector $x \in V$ to yield another vector, i.e,

$$
\forall x \in V, \forall \alpha \in F \Longrightarrow \alpha x \in V
$$

This operation must satisfy the following properties:
a) Associativity: $\forall \alpha, \beta \in F, \forall x \in V, \alpha(\beta x)=(\alpha \beta) x$
b) Identity element: $\exists 1 \in F \mid \forall x \in V, 1 x=x$
c) Distributivity of scalar multiplication with respect to vector addition:

$$
\forall \alpha \in F, \forall x, y \in V, \alpha(x+y)=\alpha x+\alpha y
$$

d) Distributivity of scalar multiplication with respect to field addition:

$$
\forall \alpha, \beta \in F, \forall x \in V,(\alpha+\beta) x=\alpha x+\beta x
$$

