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Noisy-channel coding theorem

· · · · · · DMC · · · · · ·

DMC
encoder X [i ] Y [i ]

DMC
decoder

B[l ] B̂[l ]
1 2 k 1 2 n 1 2 n 1 2 k

Rate: R = k
n Capacity: C = maxp(xi ),i=1,··· ,M I (X ,Y )

Theorem: Noisy-channel coding (Shannon, 1948)

1 mR < C ⇒ ∀δ > 0,∃ code yielding Pe < δ

2 mR > C ⇒ Pe > ε, where ε > 0 is a constant.

m = log2 M ≡ number of bits per symbol

There exist codes attaining the channel capacity, and

low R: easy to find one

high R: hard to find one
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Differential entropy

Definition: Differential entropy

h(X ) =

∫ ∞
−∞

fX (x) log2
1

fX (x)
dx bits

Gaussian random variable

X ∼ N
(
µ, σ2

X

)

µ

σ2
X

h(X ) =
1

2
log2

(
2πeσ2

X

)
bits

(irregardless of the mean!!)

Uniform random variable

X ∼ U [a, b]

a b

h(X ) = log2(b − a) bits
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Bounds on the differential entropy

for X unbounded, i.e. X ∈ (−∞,∞), with variance σ2
X ,

h(X ) maximum⇔ X ∼ N
(
·, σ2

X

)
,

and hence, for X unbounded,

h(X ) ≤ 1

2
log2

(
2πeσ2

Xbits
)

bits

for X bounded between a and b

h(X ) maximum⇔ X ∼ U [a, b] ,

and hence for X bounded,

h(X ) ≤ log2(b − a) bits
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Definition: Joint differential entropy

h(X ,Y ) =

∫ ∞
−∞

∫ ∞
−∞

fX ,Y (x , y) log2

1

fX ,Y (x , y)
dxdy

Definition: Conditional differential entropy

h(X |Y ) =

∫ ∞
−∞

fY (y)

∫ ∞
−∞

fX |Y (x |y) log2

1

fX |Y (x |y)
dxdy

or, equivalently,

h(X |Y ) =

∫ ∞
−∞

∫ ∞
−∞

fX ,Y (x , y) log2

1

fX |Y (x |y)
dxdy

Definition: Mutual information

I (X ,Y ) =

∫ ∞
−∞

∫ ∞
−∞

fX ,Y (x , y) log2

fX ,Y (x , y)

fX (x)fY (y)
dxdy
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Mutual information and conditional entropy

Properties

I (X ,Y ) ≥ 0 (non negative function)

I (X ,Y ) = 0⇔ X and Y independent

I (X ,Y ) = I (Y ,X )

Identities

(counterparts of those for the discrete case)

mutual information

I (X ,Y ) = h(Y )− h(Y |X )

= h(X )− h(X |Y )

joint entropy

h(X ,Y ) = h(X |Y ) + h(Y )

= h(Y |X ) + h(X )



Noisy-channel coding theorem Differential entropy Conditional entropy and mutual information

Mutual information and conditional entropy

Properties

I (X ,Y ) ≥ 0 (non negative function)

I (X ,Y ) = 0⇔ X and Y independent

I (X ,Y ) = I (Y ,X )

Identities

(counterparts of those for the discrete case)

mutual information

I (X ,Y ) = h(Y )− h(Y |X )

= h(X )− h(X |Y )

joint entropy

h(X ,Y ) = h(X |Y ) + h(Y )

= h(Y |X ) + h(X )



Noisy-channel coding theorem Differential entropy Conditional entropy and mutual information

Mutual information and conditional entropy

Properties

I (X ,Y ) ≥ 0 (non negative function)

I (X ,Y ) = 0⇔ X and Y independent

I (X ,Y ) = I (Y ,X )

Identities

(counterparts of those for the discrete case)

mutual information

I (X ,Y ) = h(Y )− h(Y |X )

= h(X )− h(X |Y )

joint entropy

h(X ,Y ) = h(X |Y ) + h(Y )

= h(Y |X ) + h(X )


	Noisy-channel coding theorem
	

	Differential entropy
	

	Conditional entropy and mutual information
	
	Properties


