Modulation and detection

Manuel A. Vázquez

March 20, 2024

Index

(1) Bits vs Symbols
(2) Mapping from bits to symbols
(3) Sequences of symbols

Connection between bits and symbols

$M \equiv$ number of elements in the constellation $\left(\underline{a}_{1}, \underline{a}_{2}, \cdots, \underline{a}_{M}\right)$

- The number of bits per symbol is

$$
m=\log _{2} M
$$

Connection between bits and symbols

$M \equiv$ number of elements in the constellation $\left(\underline{a}_{1}, \underline{a}_{2}, \cdots, \underline{a}_{M}\right)$

- The number of bits per symbol is

$$
m=\log _{2} M
$$

$E_{s} \equiv$ (mean) energy of the constellation

- The (mean) bit energy is defined as

$$
E_{b}=\frac{E_{s}}{m}
$$

Connection between bits and symbols

$M \equiv$ number of elements in the constellation $\left(\underline{a}_{1}, \underline{a}_{2}, \cdots, \underline{a}_{M}\right)$

- The number of bits per symbol is

$$
m=\log _{2} M
$$

$E_{s} \equiv$ (mean) energy of the constellation

- The (mean) bit energy is defined as

$$
E_{b}=\frac{E_{s}}{m}
$$

$P_{e} \equiv$ probability of symbol error $\left(\frac{\# \text { erroneous symbols }}{\# \text { symbols transmitted }}=\frac{v}{w}\right)$

- Bit Error Rate (BER)
$\left.\begin{array}{ll}\text { worst-case scenario } \rightarrow & B E R=\frac{v \times m}{w \times m}=P_{e} \\ \text { best-case scenario } \rightarrow & B E R=\frac{v \times 1}{w \times m}=\frac{P_{e}}{m}\end{array}\right\} \Rightarrow \frac{P_{e}}{m} \leq B E R \leq P_{e}$

Gray mapping

...a way to induce the best-case scenario
Premise
When an error happens we usually mistake a symbol for one of the adjacent ones.

Gray mapping

...a way to induce the best-case scenario

Premise

When an error happens we usually mistake a symbol for one of the adjacent ones.

Gray mapping: assign sequences of bits that only differ in one bit to adjacent elements in the constellation

Example: $M=4, N=2$

It is the optimal way of assigning sequences of bits to symbols.

Transmission of a sequence of symbols

Transmission of a sequence of symbols

$T \equiv$ symbol period

$$
R_{s}=\frac{1}{T} \equiv \text { symbol rate }\left(\frac{\text { symbols }}{\text { second }} \text { or bauds }\right)
$$

Transmission of a sequence of symbols

$T \equiv$ symbol period

$$
R_{s}=\frac{1}{T} \equiv \text { symbol rate }\left(\frac{\text { symbols }}{\text { second }} \text { or bauds }\right)
$$

$m \equiv$ number of bits per symbol

$$
R_{b}=m \cdot R_{s} \equiv \text { bit rate }\left(\frac{\text { bits }}{\text { second }}\right)
$$

