Fundamental limits in communications Communications Theory

Manuel A. Vázquez, Marcelino Lázaro

April 1, 2024

Index

(1) Introduction

- Performance measures
(2) Channel models
- Gaussian channel
- Gaussian channel with digital input
- Digital channel
- DMC
- BSC
(3) Sources of information

Performance of a communications system

How to measure the performance of a system? using...

- ...the probability of error, P_{e}
- \uparrow distance between elements in the constellation $\Rightarrow \downarrow P_{e}$
- \uparrow energy $E_{s} \Rightarrow \downarrow P_{e}$

Performance of a communications system

How to measure the performance of a system? using...

- ...the probability of error, P_{e}
- \uparrow distance between elements in the constellation $\Rightarrow \downarrow P_{e}$
- \uparrow energy $E_{s} \Rightarrow \downarrow P_{e}$
- ...information!! How?

Performance of a communications system

How to measure the performance of a system? using...

- ...the probability of error, P_{e}
- \uparrow distance between elements in the constellation $\Rightarrow \downarrow P_{e}$
- \uparrow energy $E_{s} \Rightarrow \downarrow P_{e}$
- ...information!! How?

Performance of a communications system

How to measure the performance of a system? using...

- ...the probability of error, P_{e}
- \uparrow distance between elements in the constellation $\Rightarrow \downarrow P_{e}$
- \uparrow energy $E_{s} \Rightarrow \downarrow P_{e}$
- ...information!! How?

amount of information at the input of the system

Performance of a communications system

How to measure the performance of a system? using...

- ...the probability of error, P_{e}
- \uparrow distance between elements in the constellation $\Rightarrow \downarrow P_{e}$
- \uparrow energy $E_{s} \Rightarrow \downarrow P_{e}$
- ...information!! How?

amount of information at the input of the system
- amount of information at the output of the system

Performance of a communications system

How to measure the performance of a system? using...

- ...the probability of error, P_{e}
- \uparrow distance between elements in the constellation $\Rightarrow \downarrow P_{e}$
- \uparrow energy $E_{s} \Rightarrow \downarrow P_{e}$
- ...information!! How?

amount of information at the input of the system
- amount of information at the output of the system amount of information lost

Performance of a communications system

How to measure the performance of a system? using...

- ...the probability of error, P_{e}
- \uparrow distance between elements in the constellation $\Rightarrow \downarrow P_{e}$
- \uparrow energy $E_{s} \Rightarrow \downarrow P_{e}$
- ...information!! How?

amount of information at the input of the system
- amount of information at the output of the system amount of information lost
- \uparrow information lost $\Rightarrow \downarrow$ performance

Performance of a communications system

In order to analyze the performance of a system using information, we need...

Performance of a communications system

In order to analyze the performance of a system using information, we need...

- a (probabilistic) channel model: it models the connection between input, X , and output, Y

些 a random connection!! not deterministic $X, Y \in\{0,1\}$

Performance of a communications system

In order to analyze the performance of a system using information, we need...

- a (probabilistic) channel model: it models the connection between input, X , and output, Y

* a random connection!! not deterministic $X, Y \in\{0,1\}$

- a quantitative measure of information: how much information is lost from the input to the output

(Probabilistic) Channel Models

They model the connection between the transmitted and received symbols,

$$
\begin{aligned}
& X \equiv \text { input } \\
& Y \equiv \text { output }
\end{aligned}
$$

Probabilistic channel model $\xrightarrow{\text { yields }} f_{Y \mid X}(y \mid x)$

(Probabilistic) Channel Models

They model the connection between the transmitted and received symbols,

$$
\begin{aligned}
& X \equiv \text { input } \\
& Y \equiv \text { output }
\end{aligned}
$$

Probabilistic channel model $\xrightarrow{\text { yields }} f_{Y \mid X}(y \mid x)$
Starting from the basic model of a communications system,

(Probabilistic) Channel Models

They model the connection between the transmitted and received symbols,

$$
\begin{aligned}
& X \equiv \text { input } \\
& Y \equiv \text { output }
\end{aligned}
$$

Probabilistic channel model $\xrightarrow{\text { yields }} f_{Y \mid X}(y \mid x)$
Starting from the basic model of a communications system,

, and depending on what we consider the input and output, we have different channel models...

Gaussian channel

Gaussian channel

The model is specified by the pdf of $r(t) \mid s(t) \sim \mathcal{N}\left(s(t), \sigma_{n}^{2}\right)$

Gaussian channel with digital input

Gaussian channel with digital input

...known as the discrete-time equivalent channel. The model is specified by the pdfs $f_{\underline{q} \mid \underline{A}}\left(\underline{q} \mid \underline{a}_{i}\right), i=1, \cdots, M$

Digital channel

Digital channel

- input and output alphabets are the same

Digital channel

- input and output alphabets are the same
- model is specified by the transition probabilities $p\left(b_{j} \mid b_{i}\right), i, j=1, \cdots, M$

Trellis representation of a digital channel

$$
B, \hat{B} \in\left\{b_{1}, b_{2}, \cdots, b_{M}\right\}
$$

input

output

$p\left(b_{j} \mid b_{i}\right) \equiv$ probability of receiving b_{j} when b_{i} was transmitted

Discrete memoryless channel (DMC)

We focus on channels with

Discrete memoryless channel (DMC)

We focus on channels with

- discrete input and output

Discrete memoryless channel (DMC)

We focus on channels with

- discrete input and output
- no memory

Discrete memoryless channel (DMC)

We focus on channels with

- discrete input and output
- no memory

The DMC is a generalization of the previous model in which the input and output alphabets can be different.

being

Discrete memoryless channel (DMC)

We focus on channels with

- discrete input and output
- no memory

The DMC is a generalization of the previous model in which the input and output alphabets can be different.

being

- $X \in \underbrace{\left\{x_{1}, x_{2}, \cdots, x_{M}\right\}}_{\text {input alphabet }}$ is a random variable

Discrete memoryless channel (DMC)

We focus on channels with

- discrete input and output
- no memory

The DMC is a generalization of the previous model in which the input and output alphabets can be different.

being

- $X \in \underbrace{\left\{x_{1}, x_{2}, \cdots, x_{M}\right\}}_{\text {input alphabet }}$ is a random variable
- $Y \in \underbrace{\left\{y_{1}, y_{2}, \cdots, y_{L}\right\}}_{\text {output alphabet }}$ is a different random variable

The DMC is determined by

The DMC is determined by

- the input alphabet: $\left\{x_{1}, x_{2}, \cdots, x_{M}\right\}$

The DMC is determined by

- the input alphabet: $\left\{x_{1}, x_{2}, \cdots, x_{M}\right\}$
- the output alphabet: $\left\{y_{1}, y_{2}, \cdots, y_{L}\right\}$

The DMC is determined by

- the input alphabet: $\left\{x_{1}, x_{2}, \cdots, x_{M}\right\}$
- the output alphabet: $\left\{y_{1}, y_{2}, \cdots, y_{L}\right\}$
- the set of probabilities $p\left(y_{j} \mid x_{i}\right)$

$$
\left.\begin{array}{l}
i=1, \cdots M \\
j=1, \cdots, L
\end{array}\right\} M \times L \text { probabilities }
$$

The DMC is determined by

- the input alphabet: $\left\{x_{1}, x_{2}, \cdots, x_{M}\right\}$
- the output alphabet: $\left\{y_{1}, y_{2}, \cdots, y_{L}\right\}$
- the set of probabilities $p\left(y_{j} \mid x_{i}\right)$

$$
\left.\begin{array}{l}
i=1, \cdots M \\
j=1, \cdots, L
\end{array}\right\} M \times L \text { probabilities }
$$

Transition probability matrix (channel matrix)

$$
\underline{\underline{P}}=\left[\begin{array}{cccc}
p\left(y_{1} \mid x_{1}\right) & p\left(y_{2} \mid x_{1}\right) & \cdots & p\left(y_{L} \mid x_{1}\right) \\
p\left(y_{1} \mid x_{2}\right) & \ddots & \cdots & p\left(y_{L} \mid x_{2}\right) \\
\vdots & \ddots & \ddots & \vdots \\
p\left(y_{1} \mid x_{M}\right) & p\left(y_{2} \mid x_{M}\right) & \cdots & p\left(y_{L} \mid x_{M}\right)
\end{array}\right]
$$

- rows add up to 1 (i-th row is the pmf of Y conditional on x_{i})
- columns do not add up to 1

Trellis representation of a DMC

Trellis representation of a DMC

- the labels leaving a certain node add up to 1

Trellis representation of a DMC

- the labels leaving a certain node add up to 1
- $\sum_{i=1}^{M} p\left(x_{i}\right)=1, \sum_{i=1}^{L} p\left(y_{i}\right)=1$

Trellis representation of a DMC

- the labels leaving a certain node add up to 1
- $\sum_{i=1}^{M} p\left(x_{i}\right)=1, \sum_{i=1}^{L} p\left(y_{i}\right)=1$
- $p\left(y_{j}\right)=\sum_{i=1}^{M} p\left(x_{i}, y_{j}\right)=\sum_{i=1}^{M} p\left(y_{j} \mid x_{i}\right) p\left(x_{i}\right)$

Example: computation of the transition probabilities

$M=4$, equally likely symbols $\left(p\left(a_{i}\right)=\frac{1}{4}\right)$, Gaussian noise with $S_{n}(j \omega)=\frac{N_{0}}{2}$

Example: computation of the transition probabilities

$M=4$, equally likely symbols $\left(p\left(a_{i}\right)=\frac{1}{4}\right)$, Gaussian noise with $S_{n}(j \omega)=\frac{N_{0}}{2}$

- Constellation: $a_{0}=-3, a_{1}=-1, a_{2}=+1, a_{3}=+3$

Example: computation of the transition probabilities

$M=4$, equally likely symbols $\left(p\left(a_{i}\right)=\frac{1}{4}\right)$, Gaussian noise with $S_{n}(j \omega)=\frac{N_{0}}{2}$

- Constellation: $a_{0}=-3, a_{1}=-1, a_{2}=+1, a_{3}=+3$
- Decision regions: thresholds $q_{t}=-2, q_{t}^{\prime}=0, q_{t}^{\prime \prime}=+2$

$$
I_{0}=(-\infty,-2], I_{1}=(-2,0], I_{2}=(0,+2], I_{3}=(+2,+\infty)
$$

Example: computation of the transition probabilities

$M=4$, equally likely symbols $\left(p\left(a_{i}\right)=\frac{1}{4}\right)$, Gaussian noise with $S_{n}(j \omega)=\frac{N_{0}}{2}$

- Constellation: $a_{0}=-3, a_{1}=-1, a_{2}=+1, a_{3}=+3$
- Decision regions: thresholds $q_{t}=-2, q_{t}^{\prime}=0, q_{t}^{\prime \prime}=+2$

In this case: $x_{0}=y_{0}=a_{0}, \cdots, x_{M}=y_{M}=a_{M} \ldots$

Example: computation of the transition probabilities

$M=4$, equally likely symbols $\left(p\left(a_{i}\right)=\frac{1}{4}\right)$, Gaussian noise with $S_{n}(j \omega)=\frac{N_{0}}{2}$

- Constellation: $a_{0}=-3, a_{1}=-1, a_{2}=+1, a_{3}=+3$
- Decision regions: thresholds $q_{t}=-2, q_{t}^{\prime}=0, q_{t}^{\prime \prime}=+2$

$$
I_{0}=(-\infty,-2], I_{1}=(-2,0], I_{2}=(0,+2], I_{3}=(+2,+\infty)
$$

In this case: $x_{0}=y_{0}=a_{0}, \cdots, x_{M}=y_{M}=a_{M} \ldots$ and hence the transition probability matrix (channel matrix) is given by

$$
\underline{\underline{P}}=\left[\begin{array}{llllll}
p\left(a_{0} \mid a_{0}\right) & p\left(a_{1} \mid a_{0}\right) & p\left(a_{2} \mid a_{0}\right) & p\left(a_{3} \mid a_{0}\right) \\
p\left(a_{0} \mid a_{1}\right) & p\left(a_{1} \mid a_{1}\right) & p\left(a_{2} \mid a_{1}\right) & p\left(a_{3} \mid a_{1}\right) \\
p\left(a_{0} \mid a_{2}\right) & p\left(a_{1} \mid a_{2}\right) & p\left(a_{2} \mid a_{2}\right) & p\left(a_{3} \mid a_{2}\right) \\
p\left(a_{0} \mid a_{3}\right) & p\left(a_{1} \mid a_{3}\right) & p\left(a_{2} \mid a_{3}\right) & p\left(a_{3} \mid a_{3}\right)
\end{array}\right]
$$

Example: elements in the first row: $p_{Y \mid X}\left(y_{j} \mid x_{0}\right), \forall j$

- $f_{q \mid A}\left(q \mid a_{0}\right)$ distribution: Gaussian with mean a_{0} and variance $N_{0} / 2$

Example: elements in the first row: $p_{Y \mid X}\left(y_{j} \mid x_{0}\right), \forall j$

- $f_{q \mid A}\left(q \mid a_{0}\right)$ distribution: Gaussian with mean a_{0} and variance $N_{0} / 2$

$$
p_{Y \mid X}\left(a_{0} \mid a_{0}\right)=1-P_{e \mid a_{0}}=1-\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right)
$$

Example: elements in the first row: $p_{Y \mid X}\left(y_{j} \mid x_{0}\right), \forall j$

- $f_{q \mid A}\left(q \mid a_{0}\right)$ distribution: Gaussian with mean a_{0} and variance $N_{0} / 2$

$$
\begin{aligned}
& p_{Y \mid X}\left(a_{0} \mid a_{0}\right)=1-P_{e \mid a_{0}}=1-\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{1} \mid a_{0}\right)=P_{e \mid a_{0} \rightarrow a_{1}}=\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right)-\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right)
\end{aligned}
$$

Example: elements in the first row: $p_{Y \mid X}\left(y_{j} \mid x_{0}\right), \forall j$

- $f_{q \mid A}\left(q \mid a_{0}\right)$ distribution: Gaussian with mean a_{0} and variance $N_{0} / 2$

$$
\begin{aligned}
& p_{Y \mid X}\left(a_{0} \mid a_{0}\right)=1-P_{e \mid a_{0}}=1-\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{1} \mid a_{0}\right)=P_{e \mid a_{0} \rightarrow a_{1}}=\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right)-\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{2} \mid a_{0}\right)=P_{e \mid a_{0} \rightarrow a_{2}}=\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right)-\mathrm{Q}\left(\frac{5}{\sqrt{N_{0} / 2}}\right)
\end{aligned}
$$

Example: elements in the first row: $p_{Y \mid X}\left(y_{j} \mid x_{0}\right), \forall j$

- $f_{q \mid A}\left(q \mid a_{0}\right)$ distribution: Gaussian with mean a_{0} and variance $N_{0} / 2$

$$
\begin{aligned}
& p_{Y \mid X}\left(a_{0} \mid a_{0}\right)=1-P_{e \mid a_{0}}=1-\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{1} \mid a_{0}\right)=P_{e \mid a_{0} \rightarrow a_{1}}=\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right)-\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{2} \mid a_{0}\right)=P_{e \mid a_{0} \rightarrow a_{2}}=\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right)-\mathrm{Q}\left(\frac{5}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{3} \mid a_{0}\right)=P_{e \mid a_{0} \rightarrow a_{3}}=\mathrm{Q}\left(\frac{5}{\sqrt{N_{0} / 2}}\right)
\end{aligned}
$$

Example: elements in the second row: $p_{Y \mid X}\left(y_{j} \mid a_{1}\right), \forall j$

- $f_{q \mid a}\left(q \mid a_{1}\right)$ distribution: Gaussian with mean a_{1} and variance $N_{0} / 2$

$$
\begin{aligned}
& p_{Y \mid X}\left(a_{0} \mid a_{1}\right)=P_{e \mid a_{1} \rightarrow a_{0}}=\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{1} \mid a_{1}\right)=1-P_{e \mid a_{1}}=1-2 \mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{2} \mid a_{1}\right)=P_{e \mid a_{1} \rightarrow a_{2}}=\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right)-\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{3} \mid a_{1}\right)=P_{e \mid a_{1} \rightarrow a_{3}}=\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right)
\end{aligned}
$$

Example: elements in the third row: $p_{Y \mid X}\left(y_{j} \mid a_{2}\right), \forall j$

- $f_{q \mid a}\left(q \mid a_{2}\right)$ distribution: Gaussian with mean a_{2} and variance $N_{0} / 2$

$$
\begin{aligned}
& p_{Y \mid X}\left(a_{0} \mid a_{2}\right)=P_{e \mid a_{2} \rightarrow a_{0}}=\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{1} \mid a_{2}\right)=P_{e \mid a_{2} \rightarrow a_{1}}=\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right)-\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{2} \mid a_{2}\right)=1-P_{e \mid a_{2}}=1-2 \mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{3} \mid a_{2}\right)=P_{e \mid a_{2} \rightarrow a_{3}}=\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right)
\end{aligned}
$$

Example: elements in the fourth row: $p_{Y \mid X}\left(y_{j} \mid a_{3}\right), \forall j$

- $f_{q \mid a}\left(q \mid a_{3}\right)$ distribution: Gaussian with mean a_{3} and variance $N_{0} / 2$

$$
\begin{aligned}
& p_{Y \mid X}\left(a_{0} \mid a_{3}\right)=P_{e \mid a_{3} \rightarrow a_{0}}=\mathrm{Q}\left(\frac{5}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{1} \mid a_{3}\right)=P_{e \mid a_{3} \rightarrow a_{1}}=\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right)-\mathrm{Q}\left(\frac{5}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{2} \mid a_{3}\right)=P_{e \mid a_{3} \rightarrow a_{2}}=\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right)-\mathrm{Q}\left(\frac{3}{\sqrt{N_{0} / 2}}\right) \\
& p_{Y \mid X}\left(a_{3} \mid a_{3}\right)=1-P_{e \mid a_{3}}=1-\mathrm{Q}\left(\frac{1}{\sqrt{N_{0} / 2}}\right)
\end{aligned}
$$

Example: wrap-up

Channel matrix $\underline{\underline{P}}$ just collects together all the above probabilities:

$$
\begin{aligned}
& \underline{P}=\left[\begin{array}{l:lllll|l}
p\left(a_{0} \mid a_{0}\right) & p\left(a_{1} \mid a_{0}\right) & p\left(a_{2} \mid a_{0}\right) & p\left(a_{3} \mid a_{0}\right) \\
p\left(a_{0} \mid a_{1}\right) & p\left(a_{1} \mid a_{1}\right) & p\left(a_{2} \mid a_{1}\right) & p\left(a_{3} \mid a a_{1}\right) \\
p\left(a_{0}\right. & \left.a_{2}\right) & p\left(a_{1} \mid a_{2}\right) & p\left(a_{2} \mid a_{2}\right) & p\left(a_{3} \mid a\right. & \left.a_{2}\right) \\
p\left(a_{0}\right. & \left.a_{3}\right) & p\left(a_{1} \mid a_{3}\right) & p\left(a_{2} \mid a_{3}\right) & p\left(a_{3} \mid\right. & \left.a_{3}\right)
\end{array}\right]
\end{aligned}
$$

Binary symmetric channel (BSC)

Particular case of DMC with $M=L=2$
$\begin{array}{cc}\mathrm{X} & \mathrm{BSC} \\ (0 \text { or } 1) & \\ & (0 \text { or } 1)\end{array}$

Binary symmetric channel (BSC)

Particular case of DMC with $M=L=2$

The labels of the trellis' edges yield the conditional probabilities:
$\left.\begin{array}{l}p(1 \mid 0)=p(0 \mid 1)=p \equiv \text { probability of error } \\ p(0 \mid 0)=p(1 \mid 1)=1-p\end{array}\right\} \Rightarrow \underline{\underline{P}}=\left[\begin{array}{cc}1-p & p \\ p & 1-p\end{array}\right]$

Binary symmetric channel (BSC)

Particular case of DMC with $M=L=2$

The labels of the trellis' edges yield the conditional probabilities:
$\left.\begin{array}{l}p(1 \mid 0)=p(0 \mid 1)=p \equiv \text { probability of error } \\ p(0 \mid 0)=p(1 \mid 1)=1-p\end{array}\right\} \Rightarrow \underline{\underline{P}}=\left[\begin{array}{cc}1-p & p \\ p & 1-p\end{array}\right]$
We can compute...

$$
\begin{aligned}
& p(Y=0)=p(0 \mid 0) p(0)+p(0 \mid 1) p(1)=(1-p) p(0)+p p(1) \\
& p(Y=1)=p(1 \mid 0) p(0)+p(1 \mid 1) p(1)=p p(0)+(1-p) p(1)
\end{aligned}
$$

Modeling sources of information

Modeling sources of information

Modeling sources of information

We focus on discrete-time sources of information

Modeling sources of information

We focus on discrete-time sources of information

Modeling sources of information

We focus on discrete-time sources of information

Modeling sources of information

We focus on discrete-time sources of information

Modeling sources of information

We focus on discrete-time sources of information

Modeling sources of information

We focus on discrete-time sources of information

Modeling sources of information

We focus on discrete-time sources of information

Every $B[i] \ldots$

- ...will be a different B transmitted in our communications system
- ...is unknown \Rightarrow it can be interpreted as a random variable \Rightarrow an information source can be modelled as a collection of random variables $\{B[i]\}_{i=-\infty}^{\infty}$, i.e., a random process
For us, the $B[i]$'s are independent and identically distributed.

