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Performance of a communications system

How to measure the performance of a system? using...

...the probability of error, Pe

↑ distance between elements in the constellation ⇒ ↓ Pe

↑ energy Es ⇒ ↓ Pe

...information!! How?

X (communications system) channel Y
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Performance of a communications system

How to measure the performance of a system? using...

...the probability of error, Pe

↑ distance between elements in the constellation ⇒ ↓ Pe

↑ energy Es ⇒ ↓ Pe

...information!! How?

X (communications system) channel Y

amount of information at the input of the system

− amount of information at the output of the system

amount of information lost

↑ information lost ⇒ ↓ performance
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Performance of a communications system

In order to analyze the performance of a system using information,
we need...

a (probabilistic) channel model: it models the connection
between input, X, and output, Y

X ,Y ∈ {0, 1}
0

1

0

1

a random connection!! not deterministic

a quantitative measure of information: how much
information is lost from the input to the output
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(Probabilistic) Channel Models

They model the connection between the transmitted and received
symbols,

X ≡ input

Y ≡ output

Probabilistic channel model
yields−−−−−−−→ fY |X (y |x)

Starting from the basic model of a communications system,

B Encoder Modulator + Demodulator Detector B̂

n(t)

A s(t) r(t) q

,and depending on what we consider the input and output, we
have different channel models...
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Gaussian channel

B Encoder Modulator + Demodulator Detector B̂

n(t)

A s(t) r(t) q

B Encoder Modulator + Demodulator Detector B̂

n(t)

A s(t) r(t) q

analog
input

analog
output

The model is specified by the pdf of r(t)|s(t) ∼ N
(
s(t), σ2n

)
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Gaussian channel with digital input

B Encoder Modulator + Demodulator Detector B̂

n(t)

A s(t) r(t) q

A

Gaussian
channel

with digital
input

q

discrete
input

continuous
output

a1

a2

...

aM

q

fq|A(q|a1)

fq|A(q|a2)

fq|A(q|aM)

...known as the discrete-time equivalent channel. The model is
specified by the pdfs fq|A(q|ai ), i = 1, · · · ,M
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Digital channel

B Encoder Modulator + Demodulator Detector B̂

n(t)

A s(t) r(t) q

B Digital channel B̂

discrete
input

discrete
output

input and output alphabets are the same

model is specified by the transition probabilities
p(bj |bi ), i , j = 1, · · · ,M
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Trellis representation of a digital channel

B, B̂ ∈ {b1, b2, · · · , bM}

...
...

p(b1|b1)

p(b2 |b1)p(b
M |b

1 )

p(b 1
|bM

)

p(bM |bM)

b1 b1

b2 b2

bM bM

input output

p(bj |bi ) ≡ probability of receiving bj when bi was transmitted
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Discrete memoryless channel (DMC)

We focus on channels with

discrete input and output

no memory

The DMC is a generalization of the previous model in which the
input and output alphabets can be different.

X DMC Y

being

X ∈ {x1, x2, · · · , xM}︸ ︷︷ ︸
input alphabet

is a random variable

Y ∈ {y1, y2, · · · , yL}︸ ︷︷ ︸
output alphabet

is a different random variable
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The DMC is determined by

the input alphabet: {x1, x2, · · · , xM}
the output alphabet: {y1, y2, · · · , yL}
the set of probabilities p(yj |xi )

i = 1, · · ·M
j = 1, · · · , L

}
M × L probabilities

Transition probability matrix (channel matrix)

P =


p(y1|x1) p(y2|x1) · · · p(yL|x1)

p(y1|x2)
. . . · · · p(yL|x2)

...
. . .

. . .
...

p(y1|xM) p(y2|xM) · · · p(yL|xM)


rows add up to 1 (i-th row is the pmf of Y conditional on xi )

columns do not add up to 1
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Trellis representation of a DMC

...
...

p(y1|x1
)

p(y2|x1)

p(
y3|x

M
)

x1

y1

x2

y2

y3

xM yL

the labels leaving a certain node add up to 1∑M
i=1 p(xi ) = 1,

∑L
i=1 p(yi ) = 1

p(yj) =
∑M

i=1 p(xi , yj) =
∑M

i=1 p(yj |xi )p(xi )
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Example: computation of the transition probabilities

M = 4, equally likely symbols
(
p(ai ) =

1
4

)
, Gaussian noise with Sn(jω) =

N0
2

Constellation: a0 = −3, a1 = −1, a2 = +1, a3 = +3

Decision regions: thresholds qt = −2, q′t = 0, q′′t = +2

I0 = (−∞,−2], I1 = (−2, 0], I2 = (0,+2], I3 = (+2,+∞)

t t t t
−3 −2 −1 0 +1 +2 +3

q
a0 a1 a2 a3

I0
� -

I1
� -

I2
� -

I3
� -

In this case: x0 = y0 = a0, · · · , xM = yM = aM ... and hence the
transition probability matrix (channel matrix) is given by

P =


p(a0 | a0) p(a1 | a0) p(a2 | a0) p(a3 | a0)
p(a0 | a1) p(a1 | a1) p(a2 | a1) p(a3 | a1)
p(a0 | a2) p(a1 | a2) p(a2 | a2) p(a3 | a2)
p(a0 | a3) p(a1 | a3) p(a2 | a3) p(a3 | a3)
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Example: elements in the first row: pY |X (yj |x0), ∀j

−3 −2 0 2

a0

I0 I1 I2 I3

q

fq|A(q|a0) distribution: Gaussian with mean a0 and variance N0/2

pY |X (a0|a0) =1− Pe|a0 = 1−Q

(
1√
N0/2

)

pY |X (a1|a0) =Pe|a0→a1 = Q

(
1√
N0/2

)
−Q

(
3√
N0/2

)

pY |X (a2|a0) =Pe|a0→a2 = Q

(
3√
N0/2

)
−Q

(
5√
N0/2

)

pY |X (a3|a0) =Pe|a0→a3 = Q

(
5√
N0/2

)
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Example: elements in the first row: pY |X (yj |x0), ∀j
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I0 I1 I2 I3
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Example: elements in the second row: pY |X (yj |a1), ∀j

−2 −1 0 2

a1

I0 I1 I2 I3

q

fq|a(q|a1) distribution: Gaussian with mean a1 and variance N0/2

pY |X (a0|a1) =Pe|a1→a0 = Q

(
1√
N0/2

)

pY |X (a1|a1) =1− Pe|a1 = 1− 2Q

(
1√
N0/2

)

pY |X (a2|a1) =Pe|a1→a2 = Q

(
1√
N0/2

)
−Q

(
3√
N0/2

)

pY |X (a3|a1) =Pe|a1→a3 = Q

(
3√
N0/2

)
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Example: elements in the third row: pY |X (yj |a2), ∀j

−2 0 1 2

a2

I0 I1 I2 I3

q

fq|a(q|a2) distribution: Gaussian with mean a2 and variance N0/2

pY |X (a0|a2) =Pe|a2→a0 = Q

(
3√
N0/2

)

pY |X (a1|a2) =Pe|a2→a1 = Q

(
1√
N0/2

)
−Q

(
3√
N0/2

)

pY |X (a2|a2) =1− Pe|a2 = 1− 2Q

(
1√
N0/2

)

pY |X (a3|a2) =Pe|a2→a3 = Q

(
1√
N0/2

)
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Example: elements in the fourth row: pY |X (yj |a3), ∀j

−2 0 2 3

a3

I0 I1 I2 I3

q

fq|a(q|a3) distribution: Gaussian with mean a3 and variance N0/2

pY |X (a0|a3) =Pe|a3→a0 = Q

(
5√
N0/2

)

pY |X (a1|a3) =Pe|a3→a1 = Q

(
3√
N0/2

)
−Q

(
5√
N0/2

)

pY |X (a2|a3) =Pe|a3→a2 = Q

(
1√
N0/2

)
−Q

(
3√
N0/2

)

pY |X (a3|a3) =1− Pe|a3 = 1−Q

(
1√
N0/2

)
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Example: wrap-up

t t t t
−3 −2 −1 0 +1 +2 +3

q
a0 a1 a2 a3

I0
� -

I1
� -

I2
� -

I3
� -

Channel matrix P just collects together all the above probabilities:

P =


p(a0 | a0) p(a1 | a0) p(a2 | a0) p(a3 | a0)
p(a0 | a1) p(a1 | a1) p(a2 | a1) p(a3 | a1)
p(a0 | a2) p(a1 | a2) p(a2 | a2) p(a3 | a2)
p(a0 | a3) p(a1 | a3) p(a2 | a3) p(a3 | a3)



=



1− Q

(
1√
No/2

)
Q

(
1√
No/2

)
− Q

(
3√
No/2

)
Q

(
3√
No/2

)
− Q

(
5√
No/2

)
Q

(
5√
No/2

)
Q

(
1√
No/2

)
1− 2Q

(
1√
No/2

)
Q

(
1√
No/2

)
− Q

(
3√
No/2

)
Q

(
3√
No/2

)
Q

(
3√
No/2

)
Q

(
1√
No/2

)
− Q

(
3√
No/2

)
1− 2Q

(
1√
No/2

)
Q

(
1√
No/2

)
Q

(
5√
No/2

)
Q

(
3√
No/2

)
− Q

(
5√
No/2

)
Q

(
1√
No/2

)
− Q

(
3√
No/2

)
1− Q

(
1√
No/2

)
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Binary symmetric channel (BSC)

Particular case of DMC with M = L = 2

X BSC Y

(0 or 1) (0 or 1)

1− p

p

p

1− p

0 0

1 1

The labels of the trellis’ edges yield the conditional probabilities:

p(1|0) = p(0|1) = p ≡ probability of error

p(0|0) = p(1|1) = 1− p

}
⇒ P =

[
1− p p
p 1− p

]
We can compute...

p(Y = 0) = p(0|0)p(0) + p(0|1)p(1) = (1− p)p(0) + pp(1)

p(Y = 1) = p(1|0)p(0) + p(1|1)p(1) = pp(0) + (1− p)p(1)
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Introduction Channel models Sources of information

Modeling sources of information

B Encoder Modulator + Demodulator Detector B̂

n(t)

A s(t) r(t) q

We focus on discrete-time sources of information

information
source

Every B[i ]...

...will be a different B transmitted in our communications
system

...is unknown ⇒ it can be interpreted as a random variable ⇒
an information source can be modelled as a collection of
random variables {B[i ]}∞i=−∞, i.e., a random process

For us, the B[i ]’s are independent and identically distributed.
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Modeling sources of information

B Encoder Modulator + Demodulator Detector B̂

n(t)

A s(t) r(t) qinformation
source

We focus on discrete-time sources of information

information
source B[0]

Every B[i ]...

...will be a different B transmitted in our communications
system

...is unknown ⇒ it can be interpreted as a random variable ⇒
an information source can be modelled as a collection of
random variables {B[i ]}∞i=−∞, i.e., a random process
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Modeling sources of information

B Encoder Modulator + Demodulator Detector B̂

n(t)

A s(t) r(t) qinformation
source

We focus on discrete-time sources of information

information
source B[0],B[1]

Every B[i ]...

...will be a different B transmitted in our communications
system

...is unknown ⇒ it can be interpreted as a random variable ⇒
an information source can be modelled as a collection of
random variables {B[i ]}∞i=−∞, i.e., a random process
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Every B[i ]...

...will be a different B transmitted in our communications
system

...is unknown ⇒ it can be interpreted as a random variable ⇒
an information source can be modelled as a collection of
random variables {B[i ]}∞i=−∞, i.e., a random process
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