

Addition of random processes

Manuel A. Vázquez

November 2, 2018

Manuel A. Vázquez Addition of random processes

Statement of the problem

X(t) and Y(t) are two processes jointly stationary

Two processes are jointly stationary iff

- they are both (individually) stationary
- their cross-correlation only depends on the time difference.

 $R_{XY}(t_1, t_2) = R_{XY}(\tau)$ $R_{YX}(t_1, t_2) = R_{YX}(\tau)$

We want to know the statistical properties of

$$Z(t) = X(t) + Y(t)$$

Mean and autocorrelation function of Z(t)

$$\mu_{Z}(t) = \mathbb{E}\left[Z(t)\right] = \mathbb{E}\left[X(t) + Y(t)\right] \\ = \mathbb{E}\left[X(t)\right] + \mathbb{E}\left[Y(t)\right] \stackrel{\mathrm{X}(t), \mathrm{Y}(t) \mathrm{WSS}}{=} \boxed{\mu_{X} + \mu_{Y}},$$

i.e., Z(t) is mean-stationary

$$R_{Z}(t+\tau,t) = \mathbb{E}\left[Z(t+\tau)Z(t)\right] = \mathbb{E}\left[\left(X(t+\tau)+Y(t+\tau)\right)\left(X(t)+Y(t)\right)\right]$$
$$= \mathbb{E}\left[X(t+\tau)X(t)\right] + \mathbb{E}\left[X(t+\tau)Y(t)\right] + \mathbb{E}\left[Y(t+\tau)X(t)\right] +$$
$$+ \mathbb{E}\left[Y(t+\tau)Y(t)\right]$$
$$= \boxed{R_{X}(\tau) + R_{XY}(\tau) + R_{YX}(\tau) + R_{Y}(\tau)},$$

i.e., Z(t) is autocorrelation-stationary

Since it is mean- and autocorrelation-stationary...Z(t) is WSS

Since Z(t) is WSS, $S_{Z}(j\omega) = \operatorname{FT}[R_{Z}(\tau)] = S_{X}(j\omega) + S_{XY}(j\omega) + S_{YX}(j\omega) + S_{Y}(j\omega)$ $= S_{X}(j\omega) + \underbrace{S_{XY}(j\omega) + S_{XY}^{*}(j\omega)}_{\text{complex number}} + S_{Y}(j\omega)$ $= \underbrace{S_{X}(j\omega) + S_{Y}(j\omega) + 2\operatorname{Re}\left\{S_{XY}(j\omega)\right\}}_{\text{l.}}.$

where it has been used that

$$S_{YX}(j\omega) = S^*_{XY}(j\omega)$$

The PSD of Z(t) involves the individual PSD's of X(t) and Y(t)...but also the cross-spectral density

The results so far hold as long as X(t) and Y(t) are jointly stationary but...

X(t) and Y(t) uncorrelated

...we can get nicer results if X(t) and Y(t) uncorrelated

Reminder

X(t), Y(t) uncorrelated $\iff \operatorname{Cov} (X(t + \tau), Y(t)) = 0 \, \forall t, \tau.$

The cross-covariance between X(t) and Y(t) is

$$Cov (X(t + \tau), Y(t)) = \mathbb{E} \left[(X(t + \tau) - \mu_X) (Y(t) - \mu_Y) \right] =$$

= $\mathbb{E} \left[X(t + \tau) Y(t) \right] - \mu_Y \underbrace{\mathbb{E} \left[X(t + \tau) \right]}_{\mu_X} - \mu_X \underbrace{\mathbb{E} \left[Y(t) \right]}_{\mu_Y} - \mu_X \mu_Y =$
= $R_{XY}(\tau) - \mu_X \mu_Y - \mu_X \mu_Y + \mu_X \mu_Y = R_{XY}(\tau) - \mu_X \mu_Y$

Now,

$$X(t), Y(t)$$
 uncorrelated $\Rightarrow R_{XY}(\tau) - \mu_X \mu_Y = 0 \Rightarrow R_{XY}(\tau) = \mu_X \mu_Y$.

X(t) or Y(t) is zero mean

If either X(t) or Y(t) is zero mean, then

 $R_{XY}(\tau) = 0$

which also yields $R_{YX}(\tau) = 0$. In terms of the autocorrelation function, this entails

 $R_Z(\tau) = R_X(\tau) + \underline{R}_{XY}(\tau) + \underline{R}_{YX}(\tau) + R_Y(\tau) = R_X(\tau) + R_Y(\tau),$

and hence,

$$S_Z(j\omega) = \operatorname{FT}[R_Z(\tau)] = S_X(j\omega) + S_Y(j\omega).$$

Summary

Given

$$Z(t)=X(t)+Y(t),$$

- if X(t) and Y(t) satisfy
 - jointly stationary
 - uncorrelated

•
$$\mathbb{E}\left[X(t)
ight]=0$$
 or $\mathbb{E}\left[Y(t)
ight]=0$,

then

$$egin{aligned} R_Z(au) &= R_X(au) + R_Y(au) \ S_Z(j\omega) &= S_X(j\omega) + S_Y(j\omega). \end{aligned}$$