

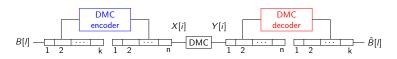
Noisy-channel coding theorem and differential entropy

Communication Theory

Manuel A. Vázquez

April 18, 2024

Noisy-channel coding theorem



Rate:
$$R = \frac{k}{n}$$
 Capacity: $C = \max_{p(x_i), i=1,\dots,M} I(X, Y)$

Theorem: Noisy-channel coding (Shannon, 1948)

- **1** $mR < C \Rightarrow \forall \delta > 0, \exists \text{ code yielding } P_e < \delta$
- ② $mR > C \Rightarrow P_e > \epsilon$, where $\epsilon > 0$ is a constant.

 $m = \log_2 M \equiv$ number of bits per symbol

There exist codes attaining the channel capacity, and

- low R: easy to find one
- high R: hard to find one

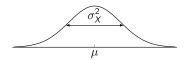
Differential entropy

Definition: Differential entropy

$$h(X) = \int_{-\infty}^{\infty} f_X(x) \log_2 \frac{1}{f_X(x)} dx \text{ bits}$$

Gaussian random variable

$$X \sim \mathcal{N}\left(\mu, \sigma_X^2\right)$$



$$h(X) = \frac{1}{2} \log_2 \left(2\pi e \sigma_X^2 \right) \text{ bits}$$

(irregardless of the mean!!)

Uniform random variable

$$X \sim \mathcal{U}[a, b]$$

$$h(X) = \log_2(b - a)$$
 bits

• for X unbounded, i.e. $X \in (-\infty, \infty)$, with variance σ_X^2 ,

$$h(X)$$
 maximum $\Leftrightarrow X \sim \mathcal{N}\left(\cdot, \sigma_X^2\right)$,

and hence, for X unbounded,

$$h(X) \le \frac{1}{2} \log_2 \left(2\pi e \sigma_X^2 \text{ bits} \right) \text{ bits}$$

for X bounded between a and b

$$h(X)$$
 maximum $\Leftrightarrow X \sim \mathcal{U}[a, b]$,

and hence for X bounded,

$$h(X) \leq \log_2(b-a)$$
 bits

Definition: Joint differential entropy

$$h(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \log_2 \frac{1}{f_{X,Y}(x,y)} dxdy$$

Definition: Conditional differential entropy

$$h(X|Y) = \int_{-\infty}^{\infty} f_Y(y) \int_{-\infty}^{\infty} f_{X|Y}(x|y) \log_2 \frac{1}{f_{X|Y}(x|y)} dxdy$$

or, equivalently,

$$h(X|Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \log_2 \frac{1}{f_{X|Y}(x|y)} dxdy$$

Definition: Mutual information

$$I(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \log_2 \frac{f_{X,Y}(x,y)}{f_{X}(x)f_{Y}(y)} dxdy$$

Mutual information and conditional entropy

Properties

- $I(X, Y) \ge 0$ (non negative function)
- $I(X, Y) = 0 \Leftrightarrow X$ and Y independent
- I(X,Y) = I(Y,X)

Identities

(counterparts of those for the discrete case)

mutual information

$$I(X, Y) = h(Y) - h(Y|X)$$

= $h(X) - h(X|Y)$

joint entropy

$$h(X, Y) = h(X|Y) + h(Y)$$
$$= h(Y|X) + h(X)$$