Course syllabus Course

Content Ove

Source

ransmitter

Channel 0 Receiver Qual

ty Analog vs Digita

Communications Theory Introduction

Manuel A. Vázquez

January 29, 2024

Index					
	Course Content 0				Analog vs Digital 00

- 1 Course syllabus
- 2 Course Content
- Overview
- 4 Source of information
- 5 Transmitter
- 6 Channel
- 🕜 The receiver
- 8 Design of a system and quality metrics
 - Quality
 - Available technologies, Cost and Resources consumption

In Analog vs Digital communications systems

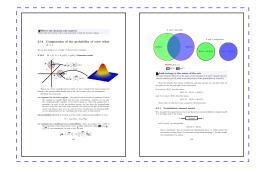
Instructors

Manuel A. Vázquez

- 4.3.A02B
- mavazque@ing.uc3m.es

(Theory + Exercises)

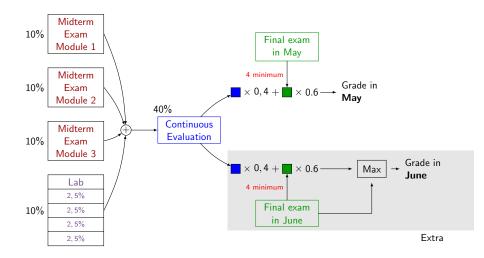
Sipon Miah


- 4.2.D09
- mdsiponmiah@tsc.uc3m.es

(Lab sessions)

To be found in Aula Global:

• Ad-hoc notes



Planning of the course

Ca	munication Theory - 2	023-2024
Regular sessions		
 Loturn in May the init 1860 to 2140 (1970) 	i and May the 3rd have been reached	aled (merged) to April the 20th from
• Legend on he least at	he hottom of the document.	
Transer	Terrer	Famor
the life		+ 24
10	1.00	
	En Mad. 1	Ro. Mark. 1
Mad. 2 houlan-	July 1 - DV 45 D42	LA L DELLCH
	Group C	Group A
A Materia cara	a 202	that he
		11 25
	1	-
124	10 105	11 135
	14.24	10 20-1
26	26	292
School Holisby - Easter Week	Robust Holdsby - Kantor Witch	Actual Holdey - Easter Week
Lee bal	10 45 Xa. Mad. 2 (1/2)	No. Mark 2 (1/2)
Mad. 3 hegins		AL. ALL & (1/4)
	En. Mad. 2 (2/2)	En. Mark 2 (8/2)
165	Lab. 2 - DVT AND AD	In the party of the second
	Group C	Group A
and Midson case	Xu. Mad. 3 (1/2)	Ro. Mad. 3 (1/2)
and their reasons and the		An. Anna. a (s/a)
475	and they have	School builder

Slides

Course syllabus Course Content Overview Source Transmitter Channel Receiver Quality Analog vs Digital

- Noise in communications systems: stochastic processes, white noise, SNR
- Modulation and detection in Gaussian channels: information modulation, demodulation and detection, error probability
- Fundamental limits in communications
- Analog modulations

What is the purpose of a communications system?

Source

Overview

00

Goal: to transmit information between two points that are somehow connected by some physical medium

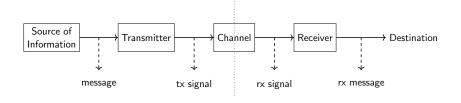
...the physical medium might be: a cable, the air, empty space...

Transmitter

Channel

Analog vs Digital

Quality


Applications

Course syllabus

- cellphone base station
- base station TV
- peer-to-peer
- radio
- streaming
- ...plenty more

When focusing on the *functionality*, the structure of a typical communications system is:

(f) message: physical manifestation of the information

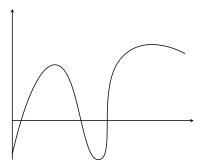
We study each of the above blocks separately...

Course syllabus Course Content Overview Source of information

It aims a communicating/reporting something

Messages produced might come in different formats

- voice
- text
- images
- • •


Sources can be

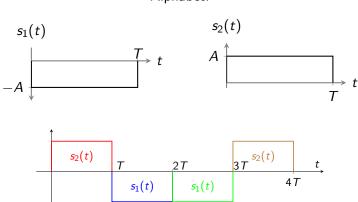
- analog
- digital

...according to the way in which information is represented

It produces messages that are modeled as a continuous waveform.

This could represent variation in the air pressure, temperature variation, bitcoin price, price of stocks...

It produces a sequence of *symbols* belonging to a **finite** set (the *alphabet*), each one sent during a certain time interval.



"a thing that represents or stands for something else" (Oxford English Dictionary)

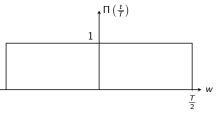
For us,

- a symbol translates into a (continuous-time) signal transmitted during a symbol period (usually denoted as T)
- the **alphabet** is a set of symbols

Alphabet:

Course syllabus Course Content Overview Source Transmitter Channel Receiver Quality Analog vs Digital Digital source: examples II

More examples of alphabets


- {©, ©}
- { $A\sin(w_0t), -A\sin(w_0t)$ }

(the signals are *digital in amplitude*)

• { $A\sin(w_1t), A\sin(w_2t)$ }

(the signals are *digital in frequency*)

• $\left\{A\Pi\left(\frac{t}{T}\right), -A\Pi\left(\frac{t}{T}\right), 3A\Pi\left(\frac{t}{T}\right), -3A\Pi\left(\frac{t}{T}\right)\right\}$ where $\Pi\left(\frac{t}{T}\right)$ is a rectangular pulse of length T centered at 0, i.e.,

(the signals are digital in amplitude)

Two different kinds of communication systems

Source

Transmitter

Channel

Overview

type of source \rightarrow type of communications system:

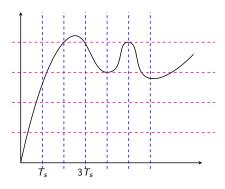
- digital source → digital communications system examples: Fiber-optic communication (internet), HDTV...pretty much everything
- analog source \rightarrow analog communications system

→ analog communications system

Receiver

Quality

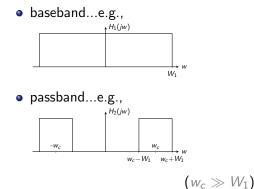
Analog vs Digital


analog source

Course syllabus

> digital communications system?

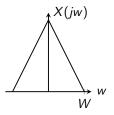
examples: old TV, radio (for how long??) how come we use digital communications system for nearly eventhing???



- sampling to discretize the time axis
 - no information loss if Nyquist condition holds
- quantization to discretize the amplitude
 - information loss

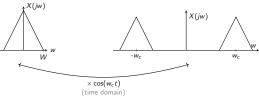
It shapes up the information coming from the source so that it can traverse the channel

It needs to know whether the system is *analog* or *digital*...but also, whether the $\underline{channel}$ is



Here, we model the channel as an LTI system,

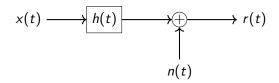
$$\begin{array}{c|c} x(t) \\ \hline X(jw) \end{array} \begin{array}{c} h(t) \\ H(jw) \end{array} \begin{array}{c} y(t) = x(t) * h(t) \\ Y(jw) = X(jw)H(jw) \end{array}$$


so, what happens if the spectrum of the signal to be transmitted is

Can the signal travel through both channels?

- x(t) can travel through the baseband channel (*baseband* transmission)
 - $\bullet\,$ without distortion if ${\it W}_1>{\it W}$
 - with distortion if $W_1 < W$ (information loss)
- x(t) cannot travel through the passband channel as it is, but...

...and we have passband transmission


The above operation is called <u>modulation</u> and $\cos(w_c t)$ is the so-called carrier signal

It is the physical medium through which information propagates

- In general, it doesn't let the transmitted signal go through as it is:
 - disturbances
 - noise
 - interference
 - distortions due to the very own nature of the channel (modeled as an LTI system)

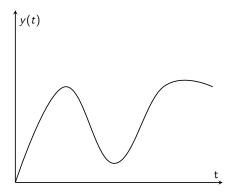
The channel is usually modeled like this:

It must recover the information transmitted as faithfully as possible

Among other things, it must

- <u>Demodulate</u>, i.e., carry the signal back to its original frequency band
- 2 Reject disturbances
- S Fix channel distortions whenever possible

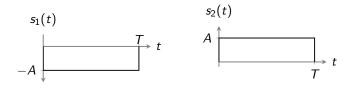
Ideally, we would like to find $h^{-1}(t)$ such that


$$x(t) \longrightarrow h(t) \xrightarrow{y(t)} y(t) \xrightarrow{y_n(t)} h^{-1}(t) \xrightarrow{h^{-1}(t)} x(t) + v(t)$$

$$n(t)$$

2 and 3 are challenging in an analog system...

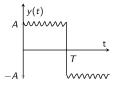
Let us assume we receive


Was this the signal actually transmitted?

Receiver in an digital system

We know the alphabet of the system, e.g.,

Overview


Source

Transmitter

If we receive...

Course syllabus

 we know disturbances and/or distortions occurred

Receiver

000

Quality

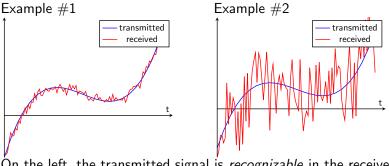
Analog vs Digital

 we can *estimate* what was transmitted (making a *decision*)

This is the point of digital communication systems!!

When designing a system, we have to take into account (among other things):

- Quality
- Available technologies
- Cost
- Resources consumption
- ...we briefly review each one of them


We need a metric for the quality of a system so that the latter can be properly designed and compared against others

Different metrics for the two different kind of systems:

- \bullet analog system \rightarrow fidelity
- $\bullet \ \ digital \ system \rightarrow error \ probability$

Course syllabus Course Content Overview Source content Overview Source content of the section of

Fidelity refers to whether the received signal resembles the transmitted one.

On the left, the transmitted signal is *recognizable* in the received one...no so much on the right

Course syllabus Course Content Overview Source Overview Source Overview Course Source Overview Course Content Overview Course Co

We need a *quantitative* measure of fidelity: it is the signal-to-noise ratio (SNR), which is defined as

- ${\color{black}{\textbf{S}}} \hspace{0.1 in} \rightarrow \hspace{0.1 in} \text{power of the signal}$
- $\mathbf{N} \rightarrow \mathbf{power} \text{ of the noise}$

Other parameter related to the quality: bandwidth

Quality in a digital system

Overview

Source

We can count how many *symbols* were correctly received...and the **probability of error** is estimated as

Transmitter

Channel

Receiver

Quality

Analog vs Digital

$$P_e = \frac{\text{number of symbols incorrectly received}}{\text{overall number of symbols transmitted}}$$

Clearly,

Course syllabus

• \uparrow quality $\Rightarrow \downarrow$ probability of error (P_e)

Just like in analog systems, the **bandwidth** also has an impact here

• \uparrow bandwidth \Rightarrow \uparrow quality

Available technologies, Cost and Resources consumption

Source

- before implementing a communications system, we should investigate the **available technologies**
 - is it worth it to use state-of-the-art technology? (how many people have access to it?)

Transmitter

Channel

Receiver

Quality

Analog vs Digital

- an old (already deployed, cheap) technology might be fine for our purposes
- we need to keep in mind the overall **cost** of the system...
 - how much is a terminal going to cost?
 - how much the base station?

Overview

• resources don't come for free

Course syllabus

Course Content

- can we take up as much bandwidth as we like?
- how much transmission power is too much? (health factors, other systems deployed in the same space)

Advantages of digital communication systems

Source

 distortions and/or disturbances occurred during transmission can be detected and/or corrected

Transmitter

Channel

Receiver

Quality

Analog vs Digital

- there are error-detection and -correction schemes (channel coding)
- more reliable, flexible and cheaper circuits

encryption

Course syllabus

• versatility: the same communications system can transmit any kind of information (ultimately, everything is bits!!)

Drawbacks of digital communication systems

Source

- synchronicity between transmitter and receiver is required
- a larger amount of bandwidth (expensive!!)
- almost every source of information is analog (not a problem in practice...)

Transmitter

Channel

Receiver

Quality

Analog vs Digital

 \sim

The advantages trump the drawbacks

Course syllabus