

Analog modulations
 Communication Theory

Manuel A. Vázquez

April 24, 2023

Index

(1) Introduction

- Digital systems
- Analog systems
- Transmission
- Baseband transmission
- Passband transmission
- Modulation
- Linear vs. angular modulations
(2) Linear modulations
- Amplitude modulation
(3) Angular modulations
- Phase modulation (PM)
- Frequency modulation (FM)

Analog vs digital communications systems

In digital systems, information is carried by symbols in an alphabet,

Alphabet example
and the most basic scheme of a system is...

Analog vs digital communications systems

In analog systems, information is contained in a continuous waveform...

2 possibilities:

- discretize the signal and transmit it using a digital system
- transmit it directly using an analog system.

We focus on the latter approach... 2 types of channels:

- Baseband
- Passband

Analog transmission

Assume we want to transmit

$$
x(t) \xrightarrow{\mathrm{FT}} w
$$

- baseband signal
- bandwidth W
...and we model the channel as a Linear Time Invariant system...

$\xrightarrow[X(j w)]{x(t)}$| $h(t)$ | $y(t)=x(t) * h(t)$ |
| :---: | :---: |
| $H(j w)$ | $Y(j w)=X(j w) H(j w)$ |

Baseband transmission

The information signal is transmitted as is

Assuming an ideal baseband channel whose bandwidth is larger than that of the signal...

Examples: telephone subscriber loop, public address systems, closed-circuit TV

Passband transmission

Let us consider an ideal passband channel whose
(1) bandwidth is larger than that of the signal, and whose
(2) center frequency, w_{c}, is much larger than the bandwidth of the signal.

- passband channel
- bandwidth $2 W_{1}$
(2) entails $w_{c}-W_{1}>W$, and hence

$$
Y(j w)=X(j w) H(j w)=0,
$$

i.e., the signal cannot get through.

Modulation

This is solved by shifting the spectrum of $x(t) \ldots$

Mathematically,

$$
x(t) \cos \left(w_{c} t\right) \stackrel{F T}{\longleftrightarrow} \frac{1}{2} X\left(j\left(w-w_{c}\right)\right)+\frac{1}{2} X\left(j\left(w+w_{c}\right)\right)
$$

This operation is called modulation. It involves three signals

$$
\underbrace{y(t)}_{\begin{array}{c}
\text { modulated } \\
\text { signal }
\end{array}}=\underbrace{x(t)}_{\substack{\text { modulating } \\
\text { signal }}} \cdot \underbrace{\cos \left(\omega_{c} t\right)}_{\begin{array}{c}
\text { carrier } \\
\text { signal }
\end{array}}
$$

Modulation

Other uses:

- multiuser systems

- protection against
- noise
- unauthorized users listening in the channel

Types of modulation

Let us consider an information signal, $x(t)$, that is

- a baseband signal, i.e., $X(j w)=0, \forall|w|>W$
- a realization of a band-limited WSS random process $X(t)$ with

$$
S_{X}(j w)=0, \forall|w|>W
$$

- a power signal, i.e., whose power is finite

Transmission of $x(t)$ is achieved by embedding it in a carrier signal of the form

and $x(t)$ can be modulating

- the amplitude,
- the frequency, or
- the phase.

Linear vs. angular modulations

In general, the modulated signal has the form

$$
y(t)=r(t) \cos \left(w_{c} t+\varphi(t)\right)
$$

- $x(t)$ is embedded in $r(t) \longrightarrow$ linear or amplitude modulation ${ }^{1}$

$$
y(t)=r(t) \cos \left(w_{c} t+\varphi\right)
$$

with constant frequency and phase.

- $x(t)$ is embedded in $\varphi(t) \longrightarrow$ angular modulation

$$
y(t)=A \cos \left(w_{c} t+\varphi(t)\right)
$$

with constant amplitude and frequency.
${ }^{1} \nRightarrow r(t)=x(t) \ldots$.. since some transformation might be applied

Linear modulations

$$
\begin{aligned}
y(t)= & r(t) \cos \left(w_{c} t+\varphi\right)=r(t)\left(\cos \left(w_{c} t\right) \cos \varphi-\sin \left(w_{c} t\right) \sin \varphi\right) \\
= & \underbrace{r(t) \cos \varphi}_{\begin{array}{c}
x_{i}(t) \\
\text { in-phase com- } \\
\text { ponent }
\end{array}} \cos \left(w_{c} t\right)-\underbrace{r(t) \sin \varphi}_{\begin{array}{c}
x_{q}(t) \\
\text { quadrature } \\
\text { component }
\end{array}} \sin \left(w_{c} t\right),
\end{aligned}
$$

$x_{i}(t)$ and $x_{q}(t)$ are rewritten in a more convenient form

- $x_{i}(t)=r(t) \cos \varphi=A_{c}+A_{m} x(t)$
- $x_{q}(t)=r(t) \sin \varphi=A_{n} \tilde{x}(t)$
where $\tilde{x}(t)$ is a transformation of $x(t)$. The new parameters determine the type of modulation:
- $A_{c} \neq 0, A_{m} \neq 0, A_{n}=0 \rightarrow \mathrm{AM}$ modulation (conventional amplitude modulation)
- $A_{c}=0, A_{m} \neq 0, A_{n}=0 \rightarrow$ DSB modulation (Double Side Band modulation)
- $A_{c}=0, A_{m} \neq 0, A_{n} \neq 0 \rightarrow$ SSB modulation (Single Side Band modulation)

AM modulation

$$
y(t)=\left(A_{c}+A_{m} x(t)\right) \cos \left(w_{c} t\right)
$$

Let us assume $|x(t)| \leq 1$ (if not, we can do $x_{n}(t)=\frac{x(t)}{\max |x(t)|}$,)

$y(t)=\left(A_{c}+\frac{A_{c}}{A_{c}} A_{m} x(t)\right) \cos \left(w_{c} t\right)=A_{c}(1+m x(t)) \cos \left(w_{c} t\right)$
with

$$
m=\frac{A_{m}}{A_{c}} \equiv \text { modulation index }
$$

AM demodulation

$A_{c}(1+m x(t)) \geq 0$ implies this signal matches the envelope of the modulated signal, $y(t)$

Envelope of a signal
The envelope of an oscillating signal (for example, a cosine) is a smooth signal that outlines its extremes.

AM demodulation

In order to guarantee $A_{c}(1+m x(t)) \geq 0$, and assuming $|x(t)| \leq 1$ (i.e. it is normalized), it is enough to choose

$$
0<m \leq 1
$$

Indeed,

$$
\left.\begin{array}{l}
0<m \leq 1 \\
|x(t)| \leq 1
\end{array}\right\} \Rightarrow(1+m x(t)) \geq 0 \Rightarrow \text { demodulation is very easy }
$$

Overmodulation

If $m>1$, it might happen that $A_{c}(1+m x(t))<0$ at some point...

The envelope is not $A_{c}(1+m x(t))$ anymore, and hence demodulation is not so easy. It is called overmodulation.

Angular modulations

The information is in the argument of the carrier

Drawbacks

- they are way more complex than linear modulations
- sometimes, they need to be studied through approximations
- they take up more bandwidth

Advantages

- they are less affected by noise...
- they trade off bandwidth for immunity against noise

Algebra for Angular modulations

$$
y(t)=A \cos \left(w_{c} t+\varphi(t)\right)=A \cos \phi(t)
$$

where

$$
\phi(t)=w_{c} t+\varphi(t) \equiv \text { instantaneous phase }
$$

From it, we have

$$
\frac{d \phi(t)}{d t}=w_{i}(t) \frac{\mathrm{rad}}{\text { second }} \equiv \text { instantaneous frequency, }
$$

in radians, which becomes

$$
\frac{1}{2 \pi} \frac{d \phi(t)}{d t}=f_{i}(t) \mathrm{Hz} \equiv \text { instantaneous frequency. }
$$

in hertz.
Doing some algebra

$$
f_{i}(t)=\frac{1}{2 \pi} \frac{d \phi(t)}{d t}=\frac{1}{2 \pi} \frac{d\left(w_{c} t+\varphi(t)\right)}{d t} \stackrel{w_{c}=2 \pi f_{c}}{=} f_{c}+\frac{1}{2 \pi} \frac{d \varphi(t)}{d t}
$$

Phase modulation

Being $x(t)$ the information signal...

$$
\varphi(t)=\beta x(t) \longrightarrow \text { Phase modulation (PM) }
$$

with $\beta \equiv$ phase deviation constant. Hence,

$$
y(t)=A \cos \left(w_{c} t+\beta x(t)\right)
$$

Frequency modulation

$$
f_{i}(t)=f_{c}+f_{d} x(t) \longrightarrow \text { Frequency modulation (FM) }
$$

with $f_{d} \equiv$ frequency deviation. It can be proved that

$$
\varphi(t)=2 \pi f_{d} \int_{-\infty}^{t} x(u) d u
$$

and hence

$$
y(t)=A \cos \left(w_{c} t+2 \pi f_{d} \int_{-\infty}^{t} x(u) d u\right)
$$

\square

