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Chapter 0

Introduction

The book is articulated around four big blocks:

1. Noise in communications systems: stochastic processes, white noise, SNR

2. Modulation and detection in Gaussian channels: information modulation, demod-
ulation and detection, error probability

3. Fundamental limits in communications

4. Analog modulations

We will deal with each one at its due time in a different chapter, but before that we
spend a few pages here to give some context.

0.1 Communications systems

The goal in any communications systems is the transmission of information between two
points that are somehow connected by any physical structure (either natural or artificial)1.
This physical structure might be a cable, air, empty space (satellite). As we all know,
communications systems have plenty of applications, e.g.,

• cellphone - base station

• base station - TV

• peer-to-peer

• radio

• streaming

• ...plenty more

When focusing on functionality, the block diagram of a general communications sys-
tem is

1Transmission is the process of sending information from one point, the origin, to another, the desti-
nation by means of a transmission medium or channel.
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Source of
Information

Transmitter Channel Receiver Destination

message tx signal rx signal rx message

The message (physical manifestation of information) may be a signal (waveform) or a
symbol.

We’ll study every block in the diagram separately.

0.1.1 Source of information

It aims at communicating or reporting something (news). Information lies in the messages
and, for us, a message is the physical manifestation of the information produced by the
source. Information can be in many different formats: voice, text, images... According
to the format of the information they produce, sources can be classified in analog and
digital.

Analog source

It produces messages (recall that a message is something tangible, something physical)
that are modeled as a continuous waveform.

• variation in air pressure when we talk (that is, the voice)

t

pressure

• temperature variation in a sensor

Some examples
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The communications system should transmit that waveform with a certain accura-
cy/fidelity (later on, we will see a way of measuring this).

Digital source

Information lies in symbols belonging to a finite set called the alphabet, and they are
sent in a finite time interval.

T

−A
t

T

A

t
the set of symbols

is the alphabet

Transmitting the symbol on the left means one thing (e.g. yes or bit “1”), and
transmitting the one on the right another thing (e.g. no or bit “0”).

Example of an an alphabet encompassing two symbols

In this course a symbol is simply a finite-duration signal.

The (digital) communications system must transmit the messages with a certain ac-
curacy or probability of error. We’ll come back to this later.

The difference between the messages produced by analog and digital sources suggest
that there are two kinds of communications systems:

• analog: old TV, radio (probably not for long...already shut down in Norway)

• digital: cell phones, ADSL (internet connections)...mostly everything else

They have different goals and this shows in the design

if the source is digital digital communications system

(no other possibility, we cannot make up a continuous waveform from a sequence of
symbols)

analog communications system

if the source is analog

digital communications system?

Can we use a digital system to transmit information from an analog source?

Yes, we can!! by digitizing the information

13



Ts 3Ts

We discretize both

• the time axis

– this is called sampling

– it is reversible if the Nyquist condition holds, in which case no information is
lost

• the amplitude axis

– this is called quantization

– it is not reversible, i.e., information is lost

0.1.2 Transmitter

The transmitter is the device/element that shapes up the information coming from the
source so that it can traverse the channel. Is this thing necessary? Can’t we transmit
the symbols (digital communications system) or the waveform (analog communications
system) as they are? In general we can’t: signals must have certain properties in order
to traverse the channel. Hence, the transmitter must have some knowledge about
the channel. For starters, the transmitter needs to know whether the system is analog
or digital but, moreover, a modulator is usually necessary.

W
w

X(jw)
• baseband signal

• bandwidtha is W

alength of the interval of positive frequencies associ-
ated with non-zero values

Let us consider two different transmission channels

• Channel #1

Example

14



W1

w

H1(jw)

– baseband channel

– bandwidth is W1

• Channel #2

wc−W1 wc+W1

-wc wc
w

H2(jw)
– passband channel

– bandwidth is 2W1

– wc is the center frequency

The channel is modeled as an LTI system

h(t)
H(jw)

x(t)

X(jw)

y(t) = x(t) ∗ h(t)

Y (jw) = X(jw)H(jw)

Can signal x(t) go through the baseband channel? and through the passband chan-
nel?

• it can travel the baseband channel

– without distortion if W1 > W

– with distortion if W1 < W (information loss)

...and we have baseband transmission, which means, transmitting the signal keep-
ing its original frequency band (as it was)

• signal x(t) cannot travel the passband channel as it is...we have to use an auxiliar
signal to allow the transmission...the so-called carrier signal (sinusoid)

W
w

X(jw)

-wc wc

w

X(jw)

× cos(wct)
(time domain)

...and we have passband transmission
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This multiplication by a cosine (or sine) to shift the signal from one frequency band
to another is called modulation. Besides serving the purpose of moving the modulated
signal to another frequency band better fit for transmission, it is also useful to

• reduce the noise and interference and, especially,

• share the channel among users: frequency division multiple access (FDMA)

0.1.3 Channel

The channel is the physical medium though which information propagates. It may cause
disturbances and distortions:

disturbances: noise and/or interfering signals contaminate (get added to) the transmit-
ted signal

• noise is a random signal (so, we don’t know its behavior) that gets added to
the transmitted signal (additive noise)

• interference occurs when signals coming from another communications system
(or a different user in ours!!) get mixed with our signal (for us, they are a
nuisance, undesirable...but they are of interest for someone else)

distortions: linear or non-linear modification of the waveform; they depend on the signal
itself and are caused by a non-ideal channel

• linear: ∃h(t) that serves to characterize it → channel is LTI

• time-varying linear: a different h(t) for every time instant

• non-linear: @h(t) characterizing it

h(t) +

n(t)

x(t) r(t)

disturbance

introduces distortion

Noise is always added at the end.

Example: channel introducing distortions and disturbances

In this course we will assume that there are no distortions, and we will only have to
deal with disturbances that are Additive White Gaussian noise (AWGN).
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0.1.4 Receiver

It must recover the information transmitted as faithfully as possible. Tasks:

1. Demodulate, i.e., carry the signal back to its original frequency band

2. Reject disturbances

3. Fix channel distortions whenever possible

Ideally, we would like to find h−1(t) such that

h(t) + h−1(t)

n(t)

x(t)
y(t) yn(t)

x(t) + v(t)

signal transmitted
plus filtered noise

2 and 3 are challenges in an analog system...why? If we receive the signal

t

y(t)

Is this the signal transmitted? We don’t know!! In an analog system we can transmit
any signal, and hence whatever we receive might well be the signal transmitted (no matter
how weird or twisted it is).

On the other hand, in a digital signal we cannot transmit whatever we want.

We have to choose the signal to transmit among a set of possible symbols (the alphabet).

T

−A
t

s1(t)

T

A

t

s2(t)

Digital communications system with two symbols in the al-
phabet

17



If we receive

T

−A

A

t

y(t)

we know that the transmitted signal has been affected by disturbances/distortions (er-
rors occurred) because the transmitter is not allowed to transmit that kind of signal.
However, it is easy to guess what was transmitted: first signal s2(t) and then s1(t).

The point is: in a digital communications system not every signal is possible.

0.2 Design of a system: quality metrics

When designing a system, there are several aspects to take into account (some of them
are limitations)

• Quality

• Available technologies

• Cost

• Resources consumption

We briefly talk about every one of them.

0.2.1 Quality

We need a measure of the quality of a system so that we can design it properly and
compare it against others. This metric is different depending on whether the system is
analog or digital.

18



analog systems

The metric is fidelity: it measures how the received signal resembles the original one

t

transmitted
received

y(t) = x(t) + n(t)

fidelity is fine: the received signal
resembles the transmitted one

t

transmitted
received

y(t) = x(t) + n(t)

fidelity is not fine: the received signal
does not resemble the transmitted one

(although you can see the trend)

On the left there is little noise whereas on the right, the noise nearly hides the signal.
In general, the higher the power of the signal as compared to the power of the noise, the

more closely the received signal will resemble the original. In order to have a quantitative
measure of this, we define the signal-to-noise ratio (SNR) as

S → power of the signal

N → power of the noise

In an analog system it is important to analytically compute this parameter.
There are other parameters impacting the quality of an analog system, such as the

bandwidth of the transmitted signal

• ↑ bandwidth ⇒ ↑ quality

telephone AM radio FM radio HiFi system

− quality + quality

digital systems

The metric is the accuracy or error probability. The receiver knows which symbols
(signals) are possible/feasible: we can tally up how many symbols were correctly received.

• ↑ quality ⇒ ↓ probability of error (Pe)

Just like the fidelity for analog systems, the SNR affects the quality of the received
signal, and hence it is important. The bandwidth is also important

• ↑ bandwidth ⇒ ↑ quality (ADSL, HDTV)
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0.2.2 Resources consumption

We need to monitor the resources we are using because they don’t come for free

• can we take up as much bandwidth as we like?

• how much transmission power is too much? (health factors, other systems deployed
in the same space)
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Chapter 1

Noise in communication systems

1.1 Cyclostationarity

Cyclostationary processes are non-stationary processes that often show up in communi-
cations (in connection with modulation and demodulation operations). Cyclostationarity
(just like stationarity) comes in two flavors. A process is:

strictly cyclostationary with period T if and only if

∀n, ∀ (t1, t2, · · · , tn)

fX(t1),X(t2),··· ,X(tn) (x1, x2, · · · , xn) = fX(t1+T ),X(t2+T ),··· ,X(tn+T ) (x1, x2, · · · , xn)

This condition is much less restrictive than the one for strict-sense stationarity: we
do not require the condition to hold for any shift ∆, but only for a certain value,
which is precisely the period T .

wide-sense cyclostationary with period T if and only if

µX(t) = E [X(t)] = µX(t+ T )

RX(t1, t2) = RX(t1 + T, t2 + T )

The condition for the autocorrelation can be rewritten using the alternative notation

RX(t+ τ, t) = RX(t+ τ + T, t+ T )

Again, we only impose the condition on the mean and autocorrelation function.

Both conditions above are about periodicity : a process is cyclostationary if

• the mean is periodic, and

• the autocorrelation function is periodic with respect to time, t (and not τ).

(Wide-sense) cyclostationary process

21



Notice that a cyclostationary process is not stationary: its autocorrelation is a function
of two variables.

Caveat

If a process is WSS, then it’s also cyclostationary, i.e.,

WSS⇒ cyclostationary

(the converse is, of course, not true). The proof is straightforward:

• if the mean is constant (WSS), then it is also periodic with any period you like
(cyclostationary), and

• if the autocorrelation only depends on τ (WSS), then it is periodic with respect
to t, since it doesn’t even depend on t (cyclostationary).

This means that wide-sense stationarity is a stronger condition than cyclostationar-
ity (and comes with nicer results and properties). Hence, in practice, after proving that
some process is WSS, you don’t even need to check whether it is also cyclostationary
(it’s given, but the implications have less of an impact).

WSS...and also cyclostationary?

Consider a process, X(t), whose autocorrelation function is RX(t1, t2) = e−|t1−t2|. Is it
autocorrelation-cyclostationary?1

Quick quiz

Consider a process X(t) whose autocorrelation function is RX(t + τ, t) = e−2|τ |. X(t)
is clearly autocorrelation-stationary since RX(t + τ, t) doesn’t depend on t. Is it also
autocorrelation-cyclostationary? 2

Quick quiz

The autocorrelation of any random process is defined as

RX(t1, t2) = E [X(t1)X(t2)∗] .

If the process is WSS, then the autocorrelation only depends on the time difference and
we write it as a function of a single variable, RX(τ), with τ = t1 − t2. Going from

Identifying the autocorrelation function

1

Onecanrewritetheautocorrelationinthemorefamiliarτ-notationtogetRX(t+τ,t)=e−|τ|with
τ=t1−t2andt=t2.Thisway,it’sclearthattheprocessisautocorrelation-cyclostationary:it’s
periodicwithrespecttot(itdoesn’tevendependont,i.e.,it’sconstantwithrespecttot).

2

ThequestionamountstodecidewhetherRX(t+τ,t)isperiodicwithrespecttot.RX(t+τ,t)isconstant
withrespecttot,andaconstantfunctionisperiodicwithanyperiodwelike.Hence,X(t)isindeed
autocorrelation-cyclostationary.Alsonoticethatwide-sensestationarityisastrongerconditionthan
cyclostationarity(andoneyieldingnicerresults),andhencewehaveWSS⇒cyclostationary.
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left to right in the above equation is definition. It is equally easy to go the other way
around (from right to left) to identify the autocorrelation function whenever we see the
expectation of a random process at a certain time instant multiplied by itself evaluated
at some other (or the same) time instant. For instance:

E [X(t+ 2)X(t+ 3)∗] = RX(t+ 2︸︷︷︸
t1

, t+ 3︸︷︷︸
t2

)

X(t) is
WSS

= RX(t+ 2︸︷︷︸
t1

−(t+ 3︸︷︷︸
t2

)) = RX(−1)

E [Y (t+ τ − 1)Y (t− 2)∗] = RY (t+ τ − 1, t− 2)

Y (t) is
WSS

= RY (τ + 1).

1.2 Power and energy of a process

The definitions of energy and power of a stochastic process are analogous to the ones we
have for deterministic signals but with the expectation operator.

Energy ...intuitively we are just putting a expectation around the definition of energy
of a signal

EX = E
[∫ ∞
−∞
|X(t)|2 dt

]
= E

[∫ ∞
−∞

X(t)X∗(t)dt

]
(expectation of the integral is the integral of the expectation...we can swap the
integral and expectation operators)

=

∫ ∞
−∞

E [X(t)X∗(t)]︸ ︷︷ ︸
RX(t,t)

dt =

∫ ∞
−∞

RX(t, t)dt
WSS
=

∫ ∞
−∞

RX(0)dt

Notice that the last part of the equation is only true for WSS processes.

Power

PX = E

[
lim
T→∞

1

T

∫ T
2

−T
2

|X(t)|2 dt

]

(the expectation of the limit is the limit of the expectation...afterwards, we use the
same steps as before)

= lim
T→∞

1

T
E

[∫ T
2

−T
2

|X(t)|2 dt

]
= lim

T→∞

1

T

∫ T
2

−T
2

RX(t, t)dt
WSS
= lim

T→∞

1

T

∫ T
2

−T
2

RX(0)dt

= lim
T→∞

RX(0)
1

T

∫ T
2

−T
2

dt = lim
T→∞

RX(0)
1

��T
��T = RX(0)
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When dealing with deterministic signals we have

energy signals: their energy is finite and their power zero

power signals: their power is finite and their energy infinity

We have the same classification here:

• a stochastic process is energy-type or finite-energy if 0 < EX <∞

• a stochastic process is power-type or finite-power if 0 < PX <∞

This applies to any stochastic process, not just WSS processes.

1.2.1 WSS processes

What about WSS processes? Are they finite-energy or finite-power? We can use the
formulas we got before for that particular case...and we see they both depend on the
autocorrelation function at 0,

EX =

∫ ∞
−∞

RX(0)dt

PX = RX(0).

We have two scenarios:

• If RX(τ) 6= δ(τ)⇒ RX(0) = constant3

EX =
∫∞
−∞RX(0)dt =∞

Px = RX(0) = constant

}
finite-power random process

• If RX(τ) = δ(τ) (what is the meaning of this? the correlation between any two
different instants is 0!!)4

EX =
∫∞
−∞RX(0)dt =

∫∞
−∞∞dt =∞

Px = RX(0) =∞

}
?

It is not a finite-power process...nor a finite-energy process. We don’t have a name
for this.

Notice that, in any case, the energy of a WSS process is always infinite.

In summary, WSS processes are mostly finite-power random processes...except in the
tricky case in which RX = δ(τ), which yields a process with infinite energy and power
(not a finite-energy process nor a finite-power one)

3Different from 0 because if RX(τ) = E
[
X2(t)

]
= 0, then

σ2
X2(t) = E

[
X2(t)

]
− E [X(t)]

2
= −E [X(t)]

2
,

and the only possibility is that variance (and the expectation) be zero.
4A δ function might look like a weird function to have for autocorrelation, but we will encounter this

later.
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1.3 Spectral Characterization of Random Processes

A frequency-domain analysis of a stochastic process is very convenient, as we will see
later5. How do we tackle this?

Recall that in a stochastic process we have a time signal for every outcome of the
experiment. Then, the first thing that comes to mind is computing the Fourier
transform of every deterministic signal encompassed by the stochastic process:

((((
((((

(((
((((

(((
(((hhhhhhhhhhhhhhhhhhhhh

ω1 → X(t, ω1)
FT←−−−−→ X(ω1, ω)

ω2 → X(t, ω2)
FT←−−−−→ X(ω2, ω)

Here ω with a subindex refers to an outcome of the random experiment whereas without
it refers to the independent variable for frequency (in radians per second). So, I see
my random process as a bunch of signals and I compute the Fourier transform of each
one...done!! In the end, we would get a new process that associates a spectrum to every
outcome of the random experiment (from end to end we are mapping every outcome of
the random experiment onto a frequency-domain signal), which is nice, and we could
even compute the mean of all those FTs (if we want a single value for every frequency).
However, this approach is not without problems...

It might be the case that the Fourier transform for a particular ωi doesn’t exist!

Problem

In order to overcome this difficulty, we define

Definition 1.3.1: Power Spectral Density (PSD)

SX(jω) = lim
T→∞

E
[
|XT (jω)|2

]
2T

where

XT (jω)
FT←−−−−→ XT (t) =

{
X(t), |t| < T

0, |t| ≥ T

is the Fourier transform of the truncated process, XT (t) (every value of the signal
after time +T or before time −T is set to 0).

−T T

That is, the PSD is the (time) average (given by the 1/2T factor) expectation of the
squared modulus of the Fourier transform of the truncated process when the value at
which we truncate approaches infinity. Why do we use this truncated process? Because,
from the convergence properties of the FT, any finite signal (time-limited) has a Fourier

5For starters, we want to know how much bandwidth our stochastic process is going to take.
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transform. Hence, the FT in the numerator always exists. Moreover, when T goes to ∞
there is no truncation and we recover the original process. As the name suggests, the
PSD measures the power of the process at every frequency.

Notice that computing the PSD from the definition is not straightforward.

The PSD is always positive (we are computing the expectation of the squared modulus).

Caveat

1.4 Properties of the power spectral density

We have general properties, which hold for any random process, properties that only hold
for WSS processes, and properties that only hold for cyclostationary processes.

general properties

PX =
1

2π

∫ ∞
−∞

SX(jω)dω

P ω1,ω2

X =
2

2π

∫ ω2

ω1

SX(jω)dω

The first formula yields the power of any process given its PSD. The second one is
the power in a particular frequency range6.

if the process is WSS

SX(jω) = FT [RX(τ)] =

∫ ∞
−∞

RX(u)e−jωudu (1.1)

or, equivalently,

RX(τ) = FT−1 [SX(jω)] =
1

2π

∫ ∞
−∞

SX(jω)ejωτdω (1.2)

Notice that, for a WSS process, the autocorrelation function is a function of a single
variable (that we usually denote as τ), and hence we have a regular (single variable)
integral.

Notice that if we plug in 0 in (1.2), we get

RX(0) =
1

2π

∫ ∞
−∞

SX(jω)dω = PX ,

which provides us with an easy way to compute the power of WSS process when
the autocorrelation function is available.

6This is definition but, intuitively, we are considering this band of frequencies both in the positive
and negative sides of the spectrum.
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if the process is cyclostationary

SX(jω) = FT
[
R̃X(τ)

]
(1.3)

where

R̃X(τ) =
1

T0

∫ T0

0

RX(t+ τ, t)dt

T0 ≡ period of the cyclostationary process,

is the average value of the autocorrelation function over a single period, T0.

Notice that we are integrating with respect to t (not τ !!), and hence the result
doesn’t depend on t. Therefore, again we compute the FT of a function of a single
variable, which is τ .

We also have a formula for power when the process is cyclostationary:

PX = R̃X(0).

Earlier we saw that it is not that easy to compute the PSD using the definition... How-
ever, if the process is stationary or cyclostationary, we can use these formulas connecting
the PSD and the autocorrelation function7. Equations (1.1) and (1.3) are corollaries of
the Wiener-Khinchin theorem (you will hear more about it in future courses).

What is the power of a WSS process with autocorrelation function RX(τ) = 2 cos(2τ) 8

Quick quiz

1.5 Response of LTI systems to a stochastic process

We want to know what happens when a stochastic process goes through a linear time-
invariant (LTI) system:

X(t) h(t) Y (t)

If you don’t know (or are uncertain about) what’s going in, then you don’t know what’s
going out (even though h(t) is assumed to be known). In other words, if the input is a
stochastic process, then so is the output.

Time signals that are produced by (or make up) the random process get modified and
so do their statistical properties. In principle, we are interested in knowing what happens
with

• the joint pdf of the random variables encompassed by the output process, Y (t),

7If the process is not WSS or cyclostationary we have no easy way of computing the PSD.
8 Wejustneedtoevaluatetheautocorrelationfunctionat0:PX=2cos(2·0)=2.

27



• properties such as stationarity, and

• the PSD.

Unless the input process is Gaussian, the expression for the joint pdf of variables from
the output process is, in general, very complicated. However, we can derive things like
the mean, the autocorrelation function, and the PSD of the output process given those
of the input one.

We start with the definition of convolution that connects the input and output of an
LTI system. The stochastic process at the output is given by

Y (t) = X(t) ∗ h(t) =

∫ ∞
−∞

X(u)h(t− u)du

= h(t) ∗X(t) =

∫ ∞
−∞

h(u)X(t− u)du

mean

µY (t) = E [Y (t)] = E
[∫ ∞
−∞

X(u)h(t− u)du

]
expectation and integral can be swapped; h(t) is a deterministic signal, and hence
can be pulled out of the expectation

=

∫ ∞
−∞

E [X(u)]h(t− u)du =

∫ ∞
−∞

µX(u)h(t− u)du

= µX(t) ∗ h(t)
WSS
= µX

∫ ∞
−∞

h(u)du = µXH(0),

where H(jω) is the frequency response associated with h(t).

autocorrelation function

RY (t1, t2) = E [Y (t1)Y ∗(t2)] = E
[∫ ∞
−∞

X(t1 − l1)h(l1)dl1

∫ ∞
−∞

X∗(t2 − l2)h∗(l2)dl2

]
we can collect the two integrals at the beginning, and reorder factors

= E
[∫ ∞
−∞

∫ ∞
−∞

X(t1 − l1)X∗(t2 − l2)h(l1)h∗(l2)dl1dl2

]
we swap integrals and expectation; h(t) is a known deterministic signal

=

∫ ∞
−∞

∫ ∞
−∞

E [X(t1 − l1)X∗(t2 − l2)]︸ ︷︷ ︸
RX(t1−l1,t2−l2)

h(l1)h∗(l2)dl1dl2

=

∫ ∞
−∞

∫ ∞
−∞

RX(t1 − l1, t2 − l2)h(l1)h∗(l2)dl1dl2
WSS
=
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so far true for any random process, we now assume WSS: the autocorrelation func-
tion only depends on the time difference

=

∫ ∞
−∞

∫ ∞
−∞

RX(t1 − l1 − t2 + l2)h(l1)h∗(l2)dl1dl2

we can see this expression as nested integrals, and h∗(l2), e.g., acts as a constant in
one of them; we also reorder the argument of RX

=

∫ ∞
−∞

h∗(l2)

[∫ ∞
−∞

RX(t1 − t2 + l2 − l1)h(l1)dl1

]
dl2

by giving t1 − t2 + l2 a name, e.g., u, it is easy to see that what we have here is∫∞
−∞RX(u− l1)h(l1)dl1 = RX(u) ∗ h(u)

=

∫ ∞
−∞

h∗(l2) [RX(t1 − t2 + l2) ∗ h(t1 − t2 + l2)] dl2
f(t)=RX(t)∗h(t)

=

what is between brackets is actually a signal evaluated at t1 − t2 + l2 (see the
Convolution box below); if we give this signal a name, e.g., f , what we have is

=

∫ ∞
−∞

h∗(l2)f(t1 − t2︸ ︷︷ ︸
τ

+l2)dl2 =

∫ ∞
−∞

h∗(l2)f(τ + l2)dl2

we can time-reverse the signal inside the integral with respect to the integration
variable (see the box below)

=

∫ ∞
−∞

h∗(−l2)f(τ − l2)dl2

this is just another convolution: the integral (between −∞ and ∞) of the product
of two signals, one of them evaluated at the (dummy) integration variable, and the
other at [the value of interest (here τ) minus the integration variable] (the first
signal is here h time-reversed)

= h∗(−τ) ∗ f(τ) = h∗(−τ) ∗RX(τ) ∗ h(τ) = RX(τ) ∗ h(τ) ∗ h∗(−τ)

Notice that this result is only for WSS processes.

We have just derived the mean and autocorrelation function of the output process,
and we have that if the input process is WSS, so is the output process.

When we write, for instance,

Rx(t1 − t2 + l2) ∗ h(t1 − t2 + l2)

or
Rx(5) ∗ h(5)

we mean, respectively, RX(t)∗h(t)
∣∣∣
t=t1−t2+l2

and RX(t)∗h(t)
∣∣∣
t=5

. The convolution

between two numbers, say Rx(5) and h(5), does not make any sense.

Convolution
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The value 5 in the expression Rx(5)∗h(5) is the time instant at which we evaluate
the convolution (the “constant” inside the corresponding integral).

Clearly, ∫ ∞
−∞

h(t)dt =

∫ ∞
−∞

h(−t)dt

since the area under a signal doesn’t change if the latter is time-reversed.

Time-reversing the function within an integral

cross-correlation function

RY X(t1, t2) = E [Y (t1)X∗(t2)] = E
[∫ ∞
−∞

X(t1 − l1)h(l1)dl1X
∗(t2)

]
=

∫ ∞
−∞

E [X(t1 − l1)X∗(t2)]h(l1)dl1 =

∫ ∞
−∞

RX(t1 − l1, t2)h(l1)dl1

WSS
=

∫ ∞
−∞

RX(t1 − l1 − t2)h(l1)dl1 = RX(t1 − t2) ∗ h(t1 − t2) = RX(τ) ∗ h(τ).

As long as the input process is WSS, the cross-correlation between the input and
output processes only depends on the time difference. Hence, by definition, they
are jointly stationary (individually stationary, with a cross-correlation that only
depends on the time difference).

Power spectral density For the case in which the input process is WSS, so is the
output process, and we can obtain its PSD by computing the FT of the autocorre-
lation function,

SY (jω)
WSS
= FT [RY (τ)] = FT [RX(τ) ∗ h(τ) ∗ h∗(−τ)]

= SX(jω)H(jω)H∗(jω) = SX(jω) |H(jω)|2

Consider two zero-mean random processesX(t) and Y (t) with autocorrelation functions,
RX(t1, t2) = e−|t1t2| and RY (t1, t2) = e−|t1−t2|, respectively. Are X(t) and Y (t) jointly
stationary? 9

Quick quiz

X(t) WSS⇒
{
Y (t) WSS (with known mean and autocorrelation function)
X(t) and Y (t) jointly stationary

In summary

9 X(t)isnotWSS,andhenceitcannotbejointlystationarywithanyprocess.
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1.6 Gaussian process

Recall that a Gaussian process is simply a random process in which the joint pdf of any
set of random variables from the process (one per time instant) is Gaussian.

Definition 1.6.1: Gaussian process

X(t) is a Gaussian process if, ∀n,∀ (t1, t2, · · · , tn), random variables {X(ti)}ni=1

have a joint Gaussian distribution.

This definition implies, among other things, that any individual random variable
(associated with a certain time instant) is Gaussian (for n = 1).

They are an important kind of stochastic process in communications for two reasons:

thermal noise, which is present in any electronic device. It is the most relevant noise
in any communications system, and is Gaussian. There are two questions here:

• why is thermal noise present in any electronic device? Because it is due to
the random movement of electrons caused by the temperature. You need
a temperature of 0 degrees Kelvin (that is, −273 degrees Celsius!!) for the
electrons to stop moving. Hence, in practice you can never get rid of thermal
noise.

• why is thermal noise Gaussian? We said it is due to the random movement of
electrons. An electric current is just a huge number of electrons put together.
If we assume the behavior of each electron is independent then we have a sum
of a huge number of independent random variables. According to the Central
Limit Theorem that approaches a Gaussian distribution.

sources of information Gaussian processes serve as a model for some sources of infor-
mation.

Hence, Gaussian processes are useful for the analysis of thermal noise, on one hand,
and for characterizing some sources of information on the other hand. Next we enumerate
some interesting properties they exhibit.

1.6.1 Properties

• The mean and autocorrelation function amount to a complete statistical description
of the process which, in turn, entails knowing the joint probability density func-
tion of any set of variables X(t1), X(tn), · · · , X(tn). For jointly Gaussian random
variables, the latter is given by

fX(t1),X(t2),··· ,X(tn)(x1, x2, · · · , xn) =
1√

(2π)ndet(ΣX)
e−

1
2

(x−µX)TΣ−1
X (x−µX)
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where “det” stands for determinant (of the argument),

x =


x1

x2
...
xn

 ≡ vector comprising the values of the n random variables,

µX =


µX(t1)

µX(t2)
...

µX(tn)

 ≡ means vector, and

ΣX =

C11 C12 · · · C1n
...

. . . . . .
...

Cn1 Cn2 · · · Cnn

 ≡ covariance matrix

with10

Cij = Cov (X(ti), X(tj)) = RX(ti, tj)− µX(ti)µX(tj).

Therefore, the mean and autocorrelation functions allow to compute both the means
vector and the covariance matrix, which completely determine the joint pdf.

• strict-sense
stationarity

⇐⇒ wide-sense
stationarity

(they are equivalent)

• X(t) Gaussian LTI Y (t) Gausian

If the input process to an LTI system is Gaussian, then so is the output process.

• Cov (X(ti), X(tj)) = 0⇔ X(ti) andX(tj) are independent

If a Gaussian process has zero mean (meaning, every individual random variable has
zero mean), what is the connection between the autocorrelation and the covariance? 11

Quick quiz

1.7 White process

It is a particular kind of wide-sense stationary process.

10Notice that the autocorrelation function is a function of two variables...a Gaussian process need not
be stationary!!

11

Theyarethesame.Morespecifically,accordingtotheabovedefinition,thecovariancebetweentime
instantsti,andtjisgivenbytheautocorrelationevaluatedatthoseparticulartimeinstants.

32



Definition 1.7.1: White process

A WSS process, X(t), is white if its PSD is constant, i.e.,

SX(jω) = C
C

ω

SX(jω)

It has the same power at every frequency. The name stems from physics: white light
encompasses all the colors, and every color is associated with a different frequency.

1.7.1 Properties

Some consequences of the definition are:

• RX(τ) = FT−1 [C] = Cδ(τ) (notice that we are using the fact that the process is
WSS)

We have seen before a WSS process whose autocorrelation function is a delta: it
was the particular case (exception) in which a process was not finite-energy nor
finite-power.

• The power of a white process is given by

PX =
1

2π

∫ ∞
−∞

SX(jω)dω =
1

2π

∫ ∞
−∞

Cdω =∞

and we saw earlier that WSS processes have infinite energy EX =
∫∞
−∞RX(0)dt =

∞.

1.7.2 Filtering of a white process

Let us consider a white process, X(t), with PSD

SX(jω) = C ⇒ RX(τ) = Cδ(τ).

We want to know what happens to it after going through an LTI system,

X(t)
h(t)
H(jω)

Y (t)

Since X(t) is white, it is also WSS, and therefore so is the output process Y (t). Then,
we can apply all the properties we derived earlier.

PSD at the output

SY (jω)
WSS
= SX(jω) |H(jω)|2 = C |H(jω)|2
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Autocorrelation function

RY (τ)
WSS
= RX(τ) ∗ h(τ) ∗ h∗(−τ) = RX(τ) ∗ rh(τ)︸ ︷︷ ︸

self-similarity
for h(t)

= Crh(τ)

with

rh(τ) = h(τ) ∗ h∗(−τ) =

∫ ∞
−∞

h(t)h∗(t− τ)dt ≡ self-similarity function.

We already knew the process was going to be autocorrelation-stationary: if the
input process is WSS, so is the output process.

Power

PY
Y(t) is WSS

= RY (0) = Crh(0)

Evaluating the self-similarity function at 0 we have

rh(0) =

∫ ∞
−∞
|h(t)|2 dt = ε {h(t)} .

Thus,

PY = Cε {h(t)} .

1.8 Thermal noise

Earlier, we came to the conclusion that, according to the Central Limit Theorem, thermal
noise must be Gaussian. Besides, quantum mechanics yields an analytical expression for
its PSD:

Sn(jω) =
hω

4π
(
e

hω
2πkT

−1
)

where

• h is Planck’s constant = 6.6 · 10−34 joules/second

• k is Boltzmann’s constant = 1.38 · 10−23 joules/degree Kelvin

• T is the temperature in degrees Kelvin, and

• ω is the frequency in radians per second.

If we plot the above formula we get
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N0 , kT

(we are giving kT a name12).
However, if we zoom in, between −100 and 100 GHz the PSD is approximately flat,

−100 100

N0/2

w
2π

(GHz)

Sn(jω)

Hence, for all practical purposes13 the noise process is white (which also entails it is
WSS)!!

Putting together everything we have seen about thermal noise we arrive at the fol-
lowing...

1.8.1 Thermal noise model

For us, thermal noise is a random process, denoted by n(t), that is

• Gaussian (from Central Limit Theorem)

12This is something to keep in mind because N0 will come up all the time: N0 is just a constant that
depends on the temperature.

13Electronic devices operate in a range of frequencies in which the PSD of thermal noise is fairly
constant, and those are precisely the frequencies we care about.
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• a white process (from quantum mechanics)

• WSS (since the process is white)

Additionally, we know that n(t) is

• zero mean, µn(t) = 0,

• with PSD Sn(jω) = N0

2
,

N0

2

ω

Sn(jω)

• and autocorrelation function Rn(τ) = N0

2
δ(τ) (since it’s WSS).

Very often we will talk about Additive White Gaussian Noise or AWGN14. This is
our model. Reality is what we saw earlier. They don’t exactly match but it is still fine.

1.8.2 Power of thermal noise at the output of ideal filters with
gain

We now consider an ideal filter (either baseband or passband) with bandwidth B Hz (or
W = 2πB rad/second) and gain

√
G.

The bandwidth is the width of the positive non-null (non-zero) frequencies.

Bandwidth of a signal/channel

√
G

W

ω

|H(jω)|

...if the channel is baseband

wc

√
G

W

w

|H(jω)|

...if the channel is passband
(wc is the center frequency)

We say that the filter h(t) has

• voltage gain
√
G,

• and power gain G.

If the noise, n(t), goes through a filter with impulse response h(t) and frequency
response H(jω),

14About the additive part, remember that, in our model for a communications channel, noise is some-
thing that gets added up at the end, after any distortion that might be introduced by an LTI system
representing the channel.

36



n(t)
h(t)
H(jω)

Z(t)

at the output we get

SZ(jω) =
N0

2
|H(jω)|2 ,

where we have used that thermal noise is a WSS process with PSD N0/2.
Then, the power of thermal noise at the output of the filter is15

PZ =
1

2π

∫ ∞
−∞

SZ(jω)dω =
1

2π

N0

2

∫ ∞
−∞
|H(jω)|2 dω =

1

2π

N0

2

∫ W

−W
Gdω

=
1

2π

N0

�2
G�2W =

1

2π
N0GW =

1

��2π
N0G��2πB = N0BG.

What happens if the filter has infinite bandwidth, i.e., if its impulse response is h(t) =
kδ(t), with k being some constant? In such case, the power is infinity, and that’s given:
you are simply amplifying (multiplying) by k a white process, and we know that any
white process has infinite power (see the properties of a white process). This becomes a
problem when you have a signal tainted by thermal noise, as we will see later on when
talking about signal-to-noise ratio

Power of thermal noise at the output of ideal filters with no gain

Sometimes people talk about ideal filters (just like that, without mentioning the gain) or
ideal filters with no gain. That ultimately means the latter is G = 1, and we can still
apply the previous result.

1.8.3 Equivalent noise bandwidth

We keep studying what happens to thermal noise when it goes through an LTI system,

n(t)
h(t)
H(jω)

Z(t)

but now it can by any system.
Why is this so important? Again, because thermal noise is everywhere and we care

how it is transformed when going through an LTI system. For instance, imagine we have
an audio signal, maybe assembled in a computer. For sure it is to some extent tainted
by thermal noise (you cannot avoid that when capturing/storing the signal). If we are
going to feed this signal into some device (e.g., speakers) we are concerned with how bad
the noise is at the output of the latter.

In general, the PSD of thermal noise at the output of an LTI system with impulse
response h(t) and frequency response H(jω) is given by,

SZ(jω) =
N0

2
|H(jω)|2 ,

15For the sake of simplicity, we are focusing on the baseband channel, but the same result is readily
obtained for the passband case.
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where we have used that thermal noise is WSS (according to our model). The power of
the output process is then

PZ =
1

2π

∫ ∞
−∞

SZ(jω)dω =
N0

2

1

2π

∫ ∞
−∞
|H(jω)|2 dω︸ ︷︷ ︸
ε{h(t)}

(Parseval)

Often it is hard to compute this integral (or, equivalently, the energy of h(t)). So, if
you buy a device and the manufacturer tells you “this is the frequency response”

maxω |H(jω)|

w

|H(jω)|

that is not so useful. That’s why we define the...

Definition 1.8.1: Equivalent noise bandwidth, Beq, of a filter h(t)

The bandwidth of an ideal (brickwall) filter whose gain matches the maximum gain
of the given filter, and which yields the same thermal noise power at the output.
Mathematically, if Beq is the equivalent noise bandwidth of h(t), then

PZ = N0BeqGeq

with

PZ ≡ power of thermal noise at the output of the filter

Beq ≡ equivalent noise bandwidth

Geq = max
ω
|H(jω)|2 ≡ equivalent power gain

Notice the above formula is simply the power of thermal noise at the output of an
ideal filter with bandwidth Beq and gain Geq.
The equivalent noise bandwidth of a device is usually provided by the manufac-
turer.

What is the meaning of this? The power of thermal noise at the output of the original
filter (with impulse response h(t)) is the same as that at the output of an ideal filter with
(power) gain Geq and bandwidth Beq,
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√
Geq

Beq

ω
2π

|H(jω)|

This ideal filter with power gain Geq and bandwidth Beq could be used as a surrogate
for the filter of interest (at least, regarding thermal noise16). How do we get the surrogate
filter to give the same power as the original filter? We are fixing its shape (we are saying
“it’s an ideal filter”) and height (“it must be as high as the original filter”), and hence
we can only play with its bandwidth

B1 B2 B3

Geq

PZ = N0B1Geq

PZ = N0B2Geq

PZ = N0B3Geq

ω
2π

|Heq(jω)|2

We must choose the value for the bandwidth, Beq, such that we get the same power as
before.

The point here is that, if we know the equivalent noise bandwidth of a generic (non-
ideal!!) filter, we can easily compute the power thermal noise at the output using the
formula for an ideal filter with gain.

What is the equivalent noise bandwidth of an ideal filter with bandwidth 10 Hz? 17

Quick quiz

16Right now, we only care about thermal noise!!
17 It’sBeq=10Hz(thefilterisalreadyideal).

39



Computation

We must choose Beq so that this equation is satisfied

PZ = N0BeqGeq

m
��N0

2

1

2π

∫ ∞
−∞
|H(jω)|2 dω︸ ︷︷ ︸
ε{h(t)}

=��N0BeqGeq

m

Beq =
ε {h(t)}

2Geq

Notice that, according to Parseval’s theorem, we can compute the energy of a signal
either in the time-domain or the frequency-domain,

ε {h(t)} =

∫ ∞
−∞
|h(t)|2 dt =

1

2π

∫ ∞
−∞
|H(jω)|2 dω.

In general, it is not so easy to compute the energy of any arbitrary h(t), but the
manufacturer carries out this integral for you. That’s the whole point.

Interpretation

If we are given a filter whose frequency response is

√
Geq

ω

|H(jω)|

and whose equivalent noise bandwidth is Beq, for the purpose of thermal noise, and
only for that, we can think of the filter as something like this

2πBeq

√
Geq

w

|H(jω)|

and the latter allows to easily compute the output power.
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Example: compute the equivalent noise bandwidth of a filter with a given
frequency response

Compute the equivalent noise bandwidth of a filter whose frequency response is given by

|H(jω)| =


√

1 + ω
W
, −W ≤ ω < 0√

1− ω
W
, 0 ≤ ω ≤ W

0, otherwise,

where W is the bandwidth in radians per second.

We have a formula for the equivalent noise bandwidth, which is

Beq =
ε {h(t)}

2Geq

=
1

2π

∫∞
−∞ |H(jω)|2 dω

2Geq

.

Notice that we can compute the energy of h(t) in the time-domain or in the frequency-
domain, the latter being apparently easier here.

The squared modulus of H(jω) is

|H(jω)|2 =


1 + ω

W
, −W ≤ ω < 0

1− ω
W
, 0 ≤ ω ≤ W

0, otherwise,

We can analyze this function piece-wise:

• on the negative side, 1 + ω
W

is a straight line with

– slope 1
W

,

– intercept (the point at which it crosses the vertical axis) 1, and

– evaluating the equation at both W and −W we get 0

• on the positive side, we have another straight line with opposite slope, and crossing
the y-axis at the same point.

Hence, the squared modulus looks like this

ω

|H(jω)|2
1

W

and we have

Geq = max
ω
|H(jω)|2 = 1.
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We still need to compute the energy of h(t)

ε {h(t)} =
1

2π

∫ ∞
−∞
|H(jω)|2 dω symmetry

= �2
1

�2π

∫ W

0

(
1− ω

W

)
dω =

1

π

∫ W

0

1dω − 1

π

∫ W

0

ω

W
dω

=
ω

π

∣∣∣W
0
− 1

πW

ω2

2

∣∣∣W
0

=
W

π
− 1

π��W

W��2

2
=
W

π
− W

2π
=
W

π

(
1− 1

2

)
=
W

2π
= B,

which is the bandwidth in Hertz. That was the hard way...the easy way is: the integral
we have just computed is the area of this triangle whose base is 2W and height is 1,

A =
2W · 1

2
= W,

and we would still need to divide by 2π,

ε {h(t)} =
A

2π
=
W

2π
= B.

If a function is symmetric, the area to the left of 0 is equal to the area to the right of
0, and hence the total area is twice the area on one side.

Integral of a symmetric function

Putting it all together, we have

Beq =
ε {h(t)}

2Geq

=
B

2× 1
=
B

2
.

Example: RC filter

In previous courses you have seen RC circuits: it is a circuit with a resistor and a
capacitor. We are going to compute the equivalent noise bandwidth of an RC circuit
acting as low-pass filter18, whose frequency response is

H(jω) =
1

1 + jωτ

with
τ = RC ≡ time constant.

Again, we start with the formula for Beq,

Beq =
ε {h(t)}

2Geq

=
1

2π

∫∞
−∞ |H(jω)|2 dω

2Geq

,

and we compute the modulus of H(jω), which is

|H(jω)| = 1√
12 + ω2τ 2

,

18This implies measuring the voltage across the capacitor.
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where we have used that the modulus of the quotient of two complex numbers is quotient
of the individual modulus.

The square of the modulus is

|H(jω)|2 =
1

12 + ω2τ 2
,

from which we infer19

Geq = max
ω
|H(jω)|2 = 1 (for ω = 0).

Next, we compute the energy of h(t) as

ε {h(t)} =
1

2π

∫ ∞
−∞
|H(jω)|2 dω symmetry

= �2
1

�2π

∫ ∞
0

|H(jω)|2 dω =
1

π

∫ ∞
0

1

12 + ω2τ 2
dω

change of variable: u = ωτ ⇒ du
dw

= τ ⇒ dω = du
τ

, ω = 0→ u = 0, ω =∞→ u =∞

=
1

π

∫ ∞
0

1

1 + u2

du

τ
=

1

πτ

∫ ∞
0

1

1 + u2
du =

1

πτ
arctan(u)

∣∣∣∞
0

=
1

�πτ

(
�π

2
− 0
)

=
1

2τ

−π
2

π
2

−10

−5

5

10

It is 0 at 0 (hence, arctan(0) = 0), and blows up at π
2

(hence, arctan(∞) is π
2
).

Tangent function

Putting it all together,

Beq =
ε {h(t)}

2Geq

=
1/2τ

2× 1
=

1

4τ
=

1

4RC
.

19As w gets away from zero, the denominator (always positive) increases. Hence, the maximum is
attained at 0.
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1.9 Signal-to-noise ratio (SNR) at the output of a

filter

We have a stochastic process that encompasses a signal of interest plus some thermal noise
(both the signal of interest and the noise are modeled as WSS stochastic processes), and
we make it go through an LTI system

+
h(t)
H(jω)

n(t)

X(t) O(t)

We want to know the signal-to-noise ratio (SNR) at the output, that is, we want to
compare the power of the signal of interest and that of the noise at the output of the
filter.

We start by computing the signal at the output of the filter by using the properties
of the convolution,

O(t) = [X(t) + n(t)] ∗ h(t) = X(t) ∗ h(t)︸ ︷︷ ︸
Y (t)

+n(t) ∗ h(t)︸ ︷︷ ︸
Z(t)

= Y (t) + Z(t).

• Y (t) is the process of interest after filtering

• Z(t) is filtered noise

The SNR at the output is given by

S
N = PY

PZ
or, in dBs, S

N (dBs) = 10 log10
PY
PZ

.

We compute PY and PZ :

Filtered signal power is the power at the output of this LTI system

X(t)
h(t)
H(jω)

Y (t)

and hence we have

PY =
1

2π

∫ ∞
−∞

SY (jω)dω
WSS
=

1

2π

∫ ∞
−∞

SX(jω) |H(jω)|2 dω

Filtered noise power is the power at the output of this LTI system

n(t)
h(t)
H(jω)

Z(t)
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and hence we have

PZ =
1

2π

∫ ∞
−∞

SZ(jω)dω =
1

2π

N0

2

∫ ∞
−∞
|H(jω)|2 dω

We know the result of this for a couple of particular cases

• ideal filters with gain

PZ = N0BG

• filters with equivalent noise bandwidth Beq and gain Geq

PZ = N0BeqGeq

1.9.1 Example

Let us consider a WSS stochastic process, X(t), with PSD

WX

WX

ω

SX(jω)

and thermal noise, n(t) with Sn(jω) = N0

2
. The sum of processes X(t) and n(t) goes

through an ideal filter with bandwidth WH > WX (hence, the filter lets the signal go
through). What is the S/N at the output?

We have this system

+
h(t)
H(jω)

n(t)

X(t) [X(t) + n(t)] ∗ h(t) = Y (t) + Z(t)

and the frequency response of the (ideal) filter is

WH

1

w

H(jω)
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By definition,
S

N
(dBs) = 10 log10

PY
PZ

.

We compute the power of the signal (at the output):

PY =
1

2π

∫ ∞
−∞

SY (jω)dω =
1

2π

∫ ∞
−∞

SX(jω) |H(jω)|2 dω

How does it look the signal within the integral?

WX WH

ω

SX(jω) |H(jω)|2

|H(jω)|2

So, SX(jω) |H(jω)|2 is exactly SX(jω). Then,

PY =
1

2π

∫ WX

−WX

SX(jω)dω
area semicircle

=
1

2�π

�πW 2
X

2
=
W 2
X

4
.

Next, we compute the power of the noise at the output,

PZ =
1

2π

∫ ∞
−∞

SZ(jω)dω =
1

2π

∫ ∞
−∞

N0

2
|H(jω)|2 dω =

1

2π

N0

2

∫ WH

−WH

1dω =
1

2π

N0

�2
�2WH

=
N0

2π
WH ,

i.e., the bandwidth of the filter in Hertz times N0 (we already knew this).
Putting it all together,

S

N
(dBs) = 10 log10

PY
PZ

= 10 log10

W 2
X

4
N0

2π
WH

= 10 log10

W 2
Xπ

2N0WH

What happens if the ideal filter has an infinite bandwidth (we are in this scenario if
we don’t use any filter at all)? We have

S

N
(dBs) = 10 log10

W 2
Xπ

2N0WH

= 10 log10

W 2
Xπ

∞
= −∞,

and that’s why in any communications receiver we must use bandlimited filter (to put a
bound on the noise).
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Chapter 2

Modulation and detection

In the introduction of the course we talked about the difference between analog and
digital communications systems: in an analog communications system any transmitted
signal is possible, whereas in a digital one the signal to be transmitted (symbol) must be
selected from a finite set of candidates (the alphabet). In the latter case we are bound
to notice when bad things happen during transmission. This is the main advantage, but
there are some extra ones such as versatility, easy (channel) coding or encryption.

In this module we focus on modulation and detection in digital communications
systems. At the end of the course we will talk briefly about analog communications
system, but the gist of the course is about digital ones.

2.1 Model of a digital communications system

We’ll be working with this general scheme for a digital communications system.

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A+ n

transmitter receiver

Notice that, for the time being, we are dismissing source coding, encryption and
channel coding1. We are focusing on the basics. What we are omitting can be studied
separately. Another important thing here is that the channel is simply adding noise to the
signal transmitted (we don’t have any distortion). This model of the channel is known as
Gaussian channel. If we had a real channel, then it would go between the transmitter
and the receiver, right after the modulator:

1The encoder in the diagram has nothing to do with source or channel coding.
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h(t) +

n(t)

s(t) r(t)

For the sake of simplicity, we assume that we transmit a single information symbol,
B (in practice, we will be transmitting a sequence), which is the input to this model. B
can take one of M possible values, b1, b2, · · · , bM , thar are collected in a set called the
alphabet. Hence, we have that is

B ∈ {b1, b2, · · · , bM}︸ ︷︷ ︸
alphabet

.

In general (though not always) we have that all the symbols are equally likely, i.e.,

P (bi) =
1

M
, i = 1, · · · ,M.

Notice that (capital) B is a random variable whereas b1, b2, · · · bM are the possible values it
can take. For example, B might be the answer to a question and we could have b1 = ”yes”
and b2 = ”no”.

At the receiver the goal is to recover the symbol B, but it might be the case that
we get a different one (still belonging to the alphabet). That’s why we write B̂ instead
of B (the hat in B̂ indicates the latter is an estimate of the actual B, which might be
different).

2.1.1 Transmitter

The symbol to be transmitted is fed into the transmitter, which is in charge of mapping
this symbol into an analog signal s(t) that is fit to travel through the channel2. This
transformation is carried out in two separate steps: encoding and modulation.

Encoder

It maps a symbol B into another symbol A using the correspondence

bi −→ ai

Symbol A may be a real number, a complex number (ultimately, a 2D vector) or,
more generally, an N -dimensional vector,

ai =


ai1
ai2
...
aiN

 .
2We cannot put a number into a transmission medium (e.g., the air)!! The system is only digital in

the sense that we must pick the signal to be transmitted from a finite set, which is the alphabet. What
we ultimately put in the channel is a continuous-time signal, a time-varying electromagnetic field.
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The first subindex in aij indicates which symbol we are referring to (the i-th symbol),
whereas the second one indicates the component, j, within the corresponding vector. The
line under A is intended to stress the fact that A is a vector.

The alphabet of A, that is, the set of possible values, is known as the constellation,

A ∈ {a1, a2, · · · , aM}︸ ︷︷ ︸
constellation

.

Notice that just like (capital) B is a random variable and bi a realization thereof, A
is a random vector and ai a particular realization.

The constellation of a digital communications system is

a1 =

1
0
0

 a2 =

0
1
0

 .
What are the values of M and N? 3

Quick quiz

Modulator

On the other hand (notice we are still on the transmitter side), the modulator performs
a mapping from symbol A into an analog continuous-time signal, s(t). If the element
from the constellation transmitted was ai, then we have

ai −→ si(t).

Hence, every element from the constellation has its own associated signal, and it holds
that

s(t) ∈ {s1(t), s2(t), · · · , sM(t)} .

In general, si(t) is

• a finite-energy signal,

• null outside the interval 0 ≤ t ≤ T (with T being the period).

In summary, the operation of the transmitter is

bi ai si(t)

encoder modulator

3 WehaveM=2elementsinthealphabet/constellation,eachoneofdimensionN=3.
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This means that by knowing one of elements in the diagram above you know all of them.
Indeed, there is a one to one mapping between any two of them.

Now the question that comes up is: why don’t we go directly from bi to si(t)? In
other words, why don’t we do bi −→ si(t) ? We don’t because the distinction between
encoder and modulator is useful. The reason is that the performance of the system (i.e,
the probability of error) only depends on the constellation, which is given by the encoder,
whereas the purpose of the modulator is simply to choose the signals s1(t), s2(t), · · · , sM(t)
that are better fitted to the nature of the channel (baseband/passband). Hence, we could
use a different modulator (if the channel changes) with the same encoder, or we could
plug a different encoder (to improve the performance) while keeping the same modulator.

2.1.2 Receiver

The receiver must estimate symbol B from the received signal, r(t). Again, notice that
the output of the receiver is an estimate, B̂, of B (maybe they are equal, maybe not).
Ideally B̂ = B, but it might well be that they are different due to disturbances and/or
distortions during transmission. If B̂ and B are different we say that an error occurred.
Figure 2.1 illustrates what happens in your standard digital communications system. The

bi ai si(t) + Demodulator Detector B̂ B̂ = bi

Transmitter

no error X

error
n(t)

Gaussian
channel

r(t)

q = ai + n

yes

no

Figure 2.1: Making decisions at the receiver.

output of the demodulator, q, is simply a noisy estimate of ai (n is a discrete noise term
stemming from continuous-time thermal noise n(t)).

We rely on this to measure the quality of a system. In particular (we have already
talked about this) our metric is going to be the probability of error, which is defined as

Pe = P (B̂ 6= B),

i.e., the probability of B̂ being different from B. The receiver is designed to minimize
this probability of error, and it also operates in two steps.

Demodulator

The demodulator produces the vector q from the received signal, r(t),

r(t)→ q = A+ n,
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and, ideally, q should resemble A (the element from the constellation that was transmit-
ted) as much as possible4. Notice that q is actually the transmitted element A plus some
noise vector n (this is shown in the diagram at the beginning of this section).

Detector

The last block in the diagram is the detector. It assigns a symbol B̂ to vector q (recall
that q need not be an element from the constellation). We should carry out this so that
the error probability is minimized. Later on, we will see this usually entails deciding the
symbol associated with the element in the constellation whose Euclidean distance to q
is smaller.

• N = 2 ⇒ the elements in the constellation, ai, are 2D-vectors

• M = 4⇒ there are four possible symbols that can be transmitted (each one being
associated with a 2D-vector, bi → ai).

Hence we have a constellation with four elements, a1, a2, a3, a4. Imagine we transmit
b1, which is associated with element a1

a1a2

a3 a4

q = a1 + n

d(q, a1) < d(q, ai), i 6= 1⇒ B̂ = b1 → good

q′ = a1 + n′

d(q′, a4) < d(q′, ai), i 6= 4⇒ B̂ = b4 → error!!

When we receive q, we find that the distance from q to a1 is smaller than the distance
from q to any other element in the constellation, ai. Hence, we decide a1...and that’s the
right decision. On the other hand, if we receive q′ there is an error because q′ is closer
to a4. How did this happen? Because the noise n can shift the transmitted vector, a1

here, to any position in the plane.

d(ai, aj) ≡ Euclidean distance between ai and aj

Detection

4This in turn means that q is not, in general, an element of the constellation.
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2.2 Criteria for the design of the system

The goal is to design a system whose error probability is as small as possible. The main
setback is, of course, the channel, that will cause disturbances and/or distortions in the
transmitted signal. We will see the role played by each block above in achieving this goal.

2.2.1 Encoder

It is designed to minimize the probability of error, and we will soon see that this depends
exclusively on the distance between the elements (vectors) in the constellation: the larger
the distance between elements in the constellation, the lower the error probability,

↑ distance between vectors =⇒↓ Pe.

One way of increasing the distance between elements is enlarging the vectors, i.e., in-
creasing their modules.

Let us assume the noise vector, n, which is added to the transmitted symbols, isa

q1

q2 n

The constellation is the same as before, and a4 is transmitted

a1a2

a3 a4

n

q = a4 + n

We decide in favor of the closest vector in the constellation, which is a1, and there is
an error. However, if the vectors representing the elements of the constellation were
longer, we would have

Impact of noise on the performance from the point of view of
the constellation
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a1a2

a3 a4

n

q = a4 + n

and there is no error (the transmitted vector stays in the appropriate quadrant even
after adding the noise vector).

aNotice that in these kind of pictures, only the head of the arrow is relevant.

We will see later on that increasing the length of a vector in the constellation is
tantamount to increasing the energy of the corresponding signal.

The bottom line here is: the further apart the elements of the constellation are from
each other the better, and this is controlled by the encoder.

2.2.2 Modulator

Here, the rule is choosing the waveforms/signals that better fit the nature of the channel,
i.e.,

• baseband channel → baseband signals, e.g., a rectangular signal

• passband channel→ passband signals, e.g., sines and cosines (their frequency com-
ponents are far away from zero)

2.2.3 Demodulator

The demodulator outputs a vector

q = ai + n,

which is a noisy estimate of the element transmitted, ai. Hence it must be designed so
that the noise vector n within q is as small as possible. Ideally, we would like

n→ 0.

In other words, we want to get of rid of as much noise as possible
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2.2.4 Detector

We’d like a rule to decide B from q that yields the least number of errors. We have seen
before that this rule is usually proximity, i.e., we compute the distance between q and
every possible ai, and choose that ai which is at minimum distance.

Pe → 0⇔ #number of erroneous decisions→ 0

• encoder → minimize the error probability (only depends on the constellation!!)

• modulator → pick up signals fitted to the nature of the channel (baseband or
passband)

• demodulator → make n within q = ai + n as small as possible

• detector → decision rule that minimizes the number of errorsa (we already know
most of the time it is going to be proximity)

aThere is always noise left after demodulation.

In summary

If we are given a digital communications system and asked to decrease its error proba-
bility, which component or components should we tweak or fine tune? 5

Quick quiz

2.3 Hilbert space for finite-energy signals

When designing the modulator, we assign a waveform to every possible element in the
constellation, ai with i = 1, · · · ,M . Indirectly, this means assigning a signal si(t) to
every information symbol bi. Remember the mapping

bi −→ ai −→ si(t).

Intuitively, in order to minimize the error probability, the receiver should be able to
easily tell apart two signals corresponding to different symbols. Then, for every i 6= j,
signals si(t) and sj(t) should be as different as possible...but it’s not easy to tell how
different two signals are.

Which signals are the most different from each other? Those on the left or those on the
right?

Comparing signals

5 Theencoder:it’sthethesinglecomponentonwhichperformancedepends.
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On the other hand, in the receiver we observe a signal r(t), and we want to know if
r(t) resembles more closely si(t) or sj(t). Sometimes it is not obvious...

What if we transmit a positive rectangular signal and we receive this?

T

1

Received signal not resembling anything possible

We need a formal/mathematical way of answering this questions. In order to tackle
this problem we are going to use a geometric representation of signals: if every
signal is a vector in a vector space then it is very easy to determine the distance between
two signals by computing the distance between the corresponding vectors. Also, this
geometric representation allows us to use many mathematical tools we are familiar with.

First of all, we need to check if a signal can be considered a vector in a vector space.
We now review the definition of vector space.
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Definition 2.3.1: Vector space

A vector space (also known as linear space) V is a set of elements, named vectors
with the following properties:

1. There exists an operation called addition, represented by the symbol + such
that x+ y ∈ V for every x, y ∈ V , i.e.,

x, y ∈ V =⇒ x+ y ∈ V

This operation must satisfy the following properties:

a) Commutativity: ∀x, y ∈ V, x+ y = y + x

b) Associativity: ∀x, y, z ∈ V, x+ (y + z) = (x+ y) + z

c) Identity element: ∃ 0 ∈ V | ∀x ∈ V, x+ 0 = 0 + x = x

d) Inverse element: ∀x ∈ V ∃(−x) | x+ (−x) = 0

2. There exists an operation called scalar multiplication that takes a scalar α ∈
F (with F being a field) and a vector x ∈ V to yield another vector, i.e,

∀x ∈ V, ∀α ∈ F =⇒ αx ∈ V

This operation must satisfy the following properties:

a) Associativity: ∀α, β ∈ F, ∀x ∈ V, α(βx) = (αβ)x

b) Identity element: ∃ 1 ∈ F | ∀x ∈ V, 1x = x

c) Distributivity of scalar multiplication with respect to vector addition:

∀α ∈ F, ∀x, y ∈ V, α(x+ y) = αx+ αy

d) Distributivity of scalar multiplication with respect to field addition:

∀α, β ∈ F, ∀x ∈ V, (α + β)x = αx+ βx

We now wonder whether the set of complex continuous-time signals is a vector space
(our V in the above notation). We can define the operations of addition and scalar
multiplication as we like. If we define them6 so that:

• addition ≡ pointwise addition of signals (usual addition of signals)

• scalar multiplication ≡ conventional product of a complex7 scalar times a signal

then, it is straightforward to prove that this addition operation satisfies the required
properties, and the same for the scalar multiplication operation.

6just like in the “Circuits & Systems” course...
7The set of complex numbers is a field.
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The set of complex continuous-time signals under these operations of addition and scalar
multiplication has a structure of vector space.

Signals as vectors in a vector space

This vector space algebra in itself is not very useful for us. Our final goal is to measure
the distance or similarity between signals. We are trying to decide which set of signals
{s1(t), s2(t), · · · , sM(t)} should be used by the modulator (those that are as different as
possible). So, we need something else. Hence, rather than talking about vector spaces,
we’ll be talking about Hilbert spaces. A Hilbert space is a vector space in which an
inner product is defined and an...

Definition 2.3.2: Inner product

...in a vector space V over the field F is a mapping between the set of pairs of
vectors and the field F ,

f : (V, V )→ F,

that is, it assigns a scalar to every pair of vectors. The inner product between
vectors x and y is denoted as 〈x, y〉 and must verify the following properties

1. 〈x, y〉 = 〈y, x〉∗

2. 〈 αx+ βy︸ ︷︷ ︸
also a vector
by definition

, z〉 = α〈x, z〉+ β〈y, z〉

3. 〈x, x〉 ≥ 0

4. 〈x, x〉 = 0 ⇐⇒ x = 0

An inner product induces a norm8 (whenever we have an inner product we get a
norm “for free”) which is defined as

||x|| =
√
〈x, x〉︸ ︷︷ ︸
≥0

and, in turn, the norm gives rise to the definition of distance between vectors we were
looking for,

d(x, y) =
∣∣∣∣x− y∣∣∣∣ .

Using the norm, we can also compute the angle between two vectors x and y as

θ = arccos
Re
{
〈x, y〉

}
||x||

∣∣∣∣y∣∣∣∣ .
When 〈x, y〉 = 0, the vectors form an angle θ = π/2, and we say they are orthogonal.

Notice that the norm and the distance stem from (are determined by) the inner
product, but any function which verifies the above conditions is an inner product. There

8A norm is just a function satisfying some properties.
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are many ways in which one can define the inner product and, as expected, different
definitions yield different Hilbert spaces which, in turn, have different metrics for the
distance. We are going to define the inner product in the vector space of continuous-time
signals (the vectors in our Hilbert space are complex continuous-time signals), and our
definition is

〈x, y〉 =

∫ ∞
−∞

x(t)y∗(t)dt.

With this definition, the resulting norm and distance between vectors are

||x|| =
√
〈x, x〉 =

√∫ ∞
−∞

x(t)x∗(t)dt =

√∫ ∞
−∞
|x(t)|2 dt =

√
ε {x(t)} (2.1)

d(x, y) =
∣∣∣∣x− y∣∣∣∣ =

√
〈x− y, x− y〉 =

√∫ ∞
−∞

(x(t)− y(t)) (x(t)− y(t))∗ dt

=

√∫ ∞
−∞

x(t)x∗(t)dt−
∫ ∞
−∞

x(t)y∗(t)dt−
∫ ∞
−∞

y(t)x∗(t)dt+

∫ ∞
−∞

y(t)y∗(t)dt

=

√√√√√ε {x(t)}+ ε {y(t)} −
∫ ∞
−∞

x(t)y∗(t)dt︸ ︷︷ ︸
correlation

−
∫ ∞
−∞

y(t)x∗(t)dt︸ ︷︷ ︸
correlation

. (2.2)

Intuitively, the above “correlation”s are measures of similarity, and we have

↑ similarity⇒↑ correlation⇒↓ distance.

The above formula for computing the distance between signals is not so convenient (it
involves the integral of a product). However, from algebra we know that any element in
a vector space can be represented as a set of coordinates (what we usually call a vector!!)
with respect to some basis. That is going to make things much easier.

2.3.1 Orthonormal bases

First of all, we recall what a basis is.
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Definition 2.3.3: Basis in a vector space

A basis in a Hilbert space H over a field F is a subset of elementsa {b1, b2, · · · } ⊂
H that determine a set of unique coefficients, {c1, c2, · · · } ⊂ F , for every vector in
the space, x, such that the latter can be expressed as

x =
∑
j

cj(x)bj, (2.3)

where

cj(x) ∈ F ≡ coordinate of vector x with respect to the j-th element in the basis

Notice that

• the coefficients, cj, are dependent on the vector they aim to represent, and

• x is an element in the Hilbert space...and so are the {b1, b2, · · · }.
aNotice that, for us, these are continuous-time signals!!

For us,

• H is the vector space of continuous-time signals, and

• the field F is the set of complex numbers, C.

The above definition means that any element in the vector space can be represented
as a linear combination of the elements in the basis, and this linear combination is given
by a unique9 set of coordinates (we have a coefficient associated with every element in
the basis).

Using the set of coordinates for a signal instead of the signal itself is interesting for
both

• representing the signals encompassed by the modulator in a more compact manner,
and

• easily comparing two signals (we just need to compute the distance between their
corresponding vectors).

There are a couple of properties that we would like for our basis:

〈bi, bj〉 = 0, ∀i 6= j ⇒ basis is orthogonal

〈bj, bj〉 = 1

}
⇒ basis is orthonormal

9This is important: with respect to some basis, the coefficients are unique. In other words, we cannot
find another set of coordinates that reconstruct the signal.

59



Notice that, in our Hilbert space (of signals), the inner product between a signal and
itself, e.g., 〈bj, bj〉, is precisely its energy (see Equation (2.1)).

Energy of a signal

These properties are desirable because, if the basis is orthonormal (and only in
this case), then

〈x, bj〉 = cj(x) ≡ coordinate of vector x with respect to the j-th element in the basis.

Geometrically this inner product can be interpreted as the projection of vector x on
the j-th element in the basis10.

In 2D-space, 〈(2, 1), (1, 0)〉 = 2 is the coordinate of vector (2, 1) with respect to element
(1, 0) in the basis (along the x-axis).

2

In our case, the elements in the vector space are continuous-time signals, and hence
〈sin(t), log(t)〉 is the projection of sin(t) over log(t).

Example

It is straightforward to mathematically prove this statement. Assume {b1, b2, · · · , bN} ⊂
H is an orthonormal basis for Hilbert space H and x ∈ H. Then

〈x, bj〉 =

since x is an element in the vector space, it can be represented as a linear combination
of the elements of any basis

= 〈
N∑
l=1

cl(x)bl, bj〉

using the properties of the inner product

=
N∑
l=1

cl(x)〈bl, bj〉

10Again, only if the basis is orthonormal does the projection match the coordinate.
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〈bl, bj〉 =

{
0, l 6= j

1, l = j

i.e., since the base is orthonormal:

• the inner product between two different elements is 0

• the inner product of an element with itself is 1

= cj(x)

In our case, we are going to represent every signal11 in the modulator, si(t), as

si(t) =
N∑
j=1

cj(si(t))︸ ︷︷ ︸
aij

φj(t) =
N∑
j=1

aijφj(t)

where aij, j = 1, · · · , N , are the coordinates12 of the signal si(t) with respect to the basis
{φ1(t), φ2(t), · · · , φN(t)} (of continuous-time signals). We can collect all the coordinates
for signal si(t) in a vector to get

ai =

ai,1...
ai,N


with the
previous
notation

=

 c1(si(t))
...

cN(si(t))

 .
Hence, given a basis {φ1(t), φ2(t), · · · , φN(t)}, ai,j is the coordinate of the i-th signal,

si(t), with respect to the j-th element in the basis, φj(t).

Are the signals below orthonormal (according to our definition of inner product)?

1 2

1

1 2

1
2

Justify your answer. 13

Quick quiz

11Our vector space is one of continuous-time signals: the x and bj ’s in Equation (2.3) are signals.
12We said earlier that the coordinates depend on the specific element you want to represent...that’s

why we need the i in the subindex.
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If for every signal, si(t), we have a vector, ai, encompassing its corresponding coordi-
nates with respect to some orthonormal basis, then computing the energy of a signal or
the distance between any two given signals is much easier.

Energy

εsi =

∫ ∞
−∞
|si(t)|2 dt =

∫ ∞
−∞

si(t)s
∗
i (t)dt =

∫ ∞
−∞

N∑
l=1

ailφl(t)
N∑
m=1

a∗imφ
∗
m(t)dt

the integral of the summation is the summation of the integral; the coordinates do not
depend on time and can be pulled out of the integral

=
N∑
l=1

N∑
m=1

aila
∗
im

∫ ∞
−∞

φl(t)φ
∗
m(t)dt =

N∑
l=1

N∑
m=1

aila
∗
im〈φl(t), φm(t)〉

the basis is orthonormal, which means

〈φl(t), φm(t)〉 =

{
0, l 6= m

1, l = m

=
N∑
l=1

|ail|2 = |ai|
2 ,

i.e., we can compute the energy of a signal as the squared14 modulus of the corresponding
vector in the constellation.

13

Theyarenot.Theyareorthogonal,becausetheinnerproductiszero(signalsdon’toverlap),butthe
secondsignaldoesnothaveunitenergy.

14Energy is a “square magnitude”!!
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Distance

d(si(t), sj(t)) = ‖si(t)− sj(t)‖ =
√
〈si(t)− sj(t), si(t)− sj(t)〉

=

√∫ ∞
−∞

(si(t)− sj(t)) (si(t)− sj(t))∗ =

√∫ ∞
−∞
|si(t)− sj(t)|2 dt

(2.2)

=

√
εsi + εsj −

∫ ∞
−∞

si(t)s∗j(t)dt−
∫ ∞
−∞

sj(t)s∗i (t)dt

real
signals

=

√
εsi + εsj − 2

∫ ∞
−∞

si(t)sj(t)dt

=

√√√√ N∑
m=1

a2
im +

N∑
m=1

a2
jm − 2

∫ ∞
−∞

N∑
m=1

aimφm(t)
N∑
n=1

ajnφn(t)dt

=

√√√√ N∑
m=1

a2
im +

N∑
m=1

a2
jm − 2

N∑
m=1

N∑
n=1

aimajn

∫ ∞
−∞

φm(t)φn(t)dt

=

√√√√ N∑
m=1

a2
im +

N∑
m=1

a2
jm − 2

N∑
m=1

aimajm =

√√√√ N∑
m=1

a2
im + a2

jm − 2aimajm

=

√√√√ N∑
m=1

(aim − ajm)2 = d(ai, aj),

where the latter distance refers to (regular) Euclidean distance between vectors15. Hence,
we can compute the distance between two signals, si(t) and sj(t) by simply computing
the Euclidean distance between their corresponding vectors16.

In summary, we can compute the

• energy of a signal

• distance between any two given signals,

without computing neither integrals nor products of signals!!17 This is the main benefit
of a geometric representation of signals.

2.3.2 Encoder-modulator connection

Remember the scheme

15d(·, ·) is an argument-wise notation: if the arguments are continuous-time signals it refers to the
Hilbert space definition of distance, whereas if the arguments are vectors then it refers to Euclidean
distance.

16We assumed real signals, but it is straightforward to extend the proof for complex signals.
17Notice that the above formulas hold regardless of the particular orthonormal basis considered.
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bi ai si(t)

encoder modulator

{φ1(t), φ2(t), · · · , φN(t)}

For us, the orthonormal basis is a property18 of the modulator, and the output of the
encoder, ai, for information symbol bi is simply a vector encompassing the coordinates
of si(t) with respect to the basis of the modulator, φi(t), i = 1, · · · , N . In other words,
the modulator has an orthonormal basis attached to it (embedded in it, so to say), and
every time it receives a vector of coordinates (from the encoder), it uses this basis and
the equation

si(t) =
N∑
j=1

aijφj(t),

to build the corresponding signal. Again, notice that the basis {φ1(t), φ2(t), · · · , φN(t)}
is something related to/associated with the modulator

We are now in a position to properly label the axes in the plot of a constellation: each
axis is associated with a different element from the basis so that ai1 is associated with
φ1(t), ai2 with φ2(t), and so forth and so on. For instance, if we label the axes of the plot
for the constellation used in the examples of Section 2.2.1 we get

φ1(t)

φ2(t)

a1a2

a3 a4

2.4 Gram-Schmidt process

In the previous section we have seen that a geometric representation of signals (relying
on an orthonormal basis and the corresponding coordinates of every signal with respect
to it) provides an easy way of telling how different or similar two signals are, which was
the main problem posed at the beginning of that section. However, if we have a set of
signals, such as those employed by the modulator, i.e., {s1(t), s2(t), · · · , sM(t)}, how can
we find an orthonormal basis spanning the same subspace as those signals?19 Using the
Gram-Schmidt process!!

18...sort of like in Object-Oriented programming (if you are a computer science-oriented person)
19Our basis should not yield signals that could not be obtained as linear combinations of
{s1(t), s2(t), · · · , sM (t)}. In other words, we are looking for a basis with the minimum number of ele-
ments.
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Our scenario is this: we have a set of M signals {s1(t), s2(t), · · · , sM(t)} that are used
to transmit information across the channel, and we want to obtain an orthonormal
basis, {φ1(t), φ2(t), · · · , φN(t)} with N ≤M , such that

si(t) =
N∑
j=1

aijφj(t),

where

aij ≡ coordinate of si(t) with respect to φj(t),

i.e., the signals in the orthonormal basis allow us to represent the signals in the modulator
as vectors of coefficients,

ai =


ai1
ai2
...
aiN

 ,
in the sense that a vector of coefficients perfectly determines the corresponding signal.
In aij, subindex i refers to a vector in the constellation and j to a coordinate within that
vector.

The Gram-Schmidt process goes sequentially over every one of the input signals,
and can be summarized as follows:

s1(t) The first element in the basis is always the first signal in the set...but normalized
so that its energy is 1 (we aim at an orthonormal basis), i.e.,

φ1(t) =
s1(t)
√
εs1

where εsi stands for the energy of si(t), which is a continuous-time signal.

So far, with our current basis, we can only represent signal s1(t).

s2(t) We now move on and process the second signal, s2(t). We also want to represent
s2(t) using the elements in the orthonormal basis. In order to check whether that’s
already possible or not, we project (that means computing an inner product) s2(t)
over φ1(t) and we have something like this

φ1(t)

s2(t)

a21

with

a21 = 〈s2(t), φ1(t)〉.
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In the above example s2(t) has a component along the φ1(t) axis, but there is some
part of s2(t) which cannot be represented using only φ1(t) (s2(t) has a component
along φ1(t)...but there is more). That part is

s2(t)− a21φ1(t) = d2(t), (2.4)

and we are giving that a name, which is d2(t) (as in difference). It is easy to see
that d2(t) is orthogonal to φ1(t) (which makes sense, since we have subtracted from
s2(t) its projection over φ1(t)20)

φ1(t)

s2(t)−a21φ1(t)

d2(t)

We can also check this mathematically: if d2(t) is orthogonal to φ1(t), then their
inner product should be zero,

〈φ1(t), d2(t)〉 = 〈φ1(t), s2(t)− a21φ1(t)〉 properties 〈·〉
= 〈φ1(t), s2(t)〉 − a21��

���
���:1

〈φ1(t), φ1(t)〉
= a21 − a21 = 0

What happens if d2(t) = 0?

d2(t) = 0 = s2(t)− a21φ1(t)⇒ s2(t) = a21φ1(t),

i.e., s2(t) is φ1(t) multiplied by some constant. In other words, s2(t) can be repre-
sented using the elements that are already in the basis (so far only φ1(t)), and we
don’t need to add a new signal to the basis in order to represent s2(t). If you check
the picture, d2(t) = 0 means s2(t) is along the φ1(t) axis.

The other possibility is d2(t) 6= 0. In such a case, we have that d2(t) is orthogonal
to φ1(t) and, at the sight of equation (2.4), it allows representing s2(t),

s2(t) = a21φ1(t) + d2(t),

with d2(t) 6= 0. Hence, we have a signal, d2(t), that is orthogonal to φ1(t) and, along
with the latter, will allow us to represent s2(t). We should add it to the basis, but
we cannot add it as it is because the basis is orthonormal, that is, every element
must have unit energy. It’s not a problem: our second element in the basis is d2(t)
normalized so that it has unit energy,

φ2(t) =
d2(t)
√
εd2

20Notice that, mathematically, orthogonal means 0 projection!!
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(in order to normalize a signal you need to divide by the square root of its energy).

In summary, what we did here is computing the coordinates of s2(t) with respect
to the elements that already are in the basis, we subtracted their contribution from
s2(t), and we normalized the resulting signal before adding it to the basis.

s3(t) We continue processing s3(t)...and we follow the same steps

• we compute the coordinates of s3(t) with respect to the elements that are
already in the basis and, assuming there is now two elements in the latter21,
φ1(t) and φ2(t), we have

a31 = 〈s3(t), φ1(t)〉
a32 = 〈s3(t), φ2(t)〉

• we find out the part of s3(t) that we cannot represent with whatever we have
right now in the basis (that’s what we call d3(t)),

d3(t) = s3(t)− a31φ1(t)− a32φ2(t)

(d3(t) is orthogonal to every signal already in the basis)

• if d3(t) 6= 0, we normalize it and add it to the basis,

φ3(t) =
d3(t)
√
εd3

In general, for sl(t), when there are k − 1 elements in the basis , we process the
l-th signal22, with l − 1 ≥ k − 1, as follows

• we compute the coordinates with respect to all the elements that are already
in the basis

al1 = 〈sl(t), φ1(t)〉
al2 = 〈sl(t), φ2(t)〉
...

...

alk−1 = 〈sl(t), φk−1(t)〉

(k − 1 is the number of elements currently in the basis).

• we compute the difference signal, dl(t), as

dl(t) = sl(t)−
k−1∑
j=1

aljφj(t)

• two possibilities:

21i.e., assuming d2(t) 6= 0 in the previous step
22...meaning we have already processed l − 1
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– If dl(t) 6= 0, we normalize it and add it to the basis,

φk(t) = dl(t)√
εdl
, (dl(t) 6= 0) .

– If dl(t) = 0, we just go for the next signal.

Notice that k ≤ l because we don’t add a new element to the basis every time we
process a signal. At the end of the procedure we have a basis

{φ1(t), φ2(t), · · · , φN(t), }

with
# elements
in the basis︷︸︸︷

N ≤

# signals we
want to represent︷︸︸︷

M ,

where N is the dimension of the elements in our constellation.

2.4.1 Example: Gram-Schmidt process

Let us use Gram-Schmidt to find an orthonormal basis for the 4 signals below.

2

1

t

s1(t)

2

1

−1

1 t

s2(t)

3

1

−1

2 t

s3(t)

3

−1

t

s4(t)

We just apply the above steps:

s1(t) The first signal goes directly into the basis after normalization, i.e.,
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φ1(t) =
s1(t)
√
εs1

=
s1(t)√

2

2

1√
2

t

φ1(t)

with

εs1 =

∫ ∞
−∞
|s1(t)|2 dt =

∫ 2

0

12dt = 2

s2(t) We go for the next (second) signal in the given set. We need to compute its
coordinates with respect to all the elements that are already in the basis. So far,
we only have φ1(t), and the coordinate of s2(t) with respect to φ1(t) is given by23

a21 = 〈s2(t), φ1(t)〉 =

∫ ∞
−∞

s2(t)φ1(t)dt.

An easy (and less error-prone) approach to compute the above integral is think
of it as the area under the signal given by the product s2(t)φ1(t). The latter can
be computed piecewise by evaluating the product in time intervals in which both
signals are constant (and hence the product is straightforward). Here, both signals
are constant during intervals [0, 1] and [1, 2] (although with different value in the
latter)24. The product of the two signals is then

2

1√
2

− 1√
2

1 t

s2(t)φ1(t)

s2(t)φ1(t) =



s2(t)︷︸︸︷
1 ·

φ1(t)︷︸︸︷
1√
2
, 0 ≤ t < 1

−1︸︷︷︸
s2(t)

· 1√
2︸︷︷︸

φ1(t)

, 1 ≤ t < 2

and hence

a21 = 〈s2(t), φ1(t)〉 =

∫ 1

0

1√
2
dt+

∫ 2

1

−1√
2
dt =

∫ 1

0

1√
2
dt−

∫ 1

0

1√
2
dt = 0 .

Next, from s2(t), we must build a signal that is orthogonal to every one of the
elements in the (current) basis. It is the difference signal, d2(t), that we defined as

d2(t) = s2(t)−���*
0

a21φ1(t) = s2(t).

This means s2(t) (= d2(t)) is already orthogonal to φ1(t)...but that is something
we already knew because the inner product between them, i.e., 〈s2(t), φ1(t)〉 = a21,

23Notice that, since we are dealing with real signals, we are omitting the conjugate superindex every-
where.

24Choosing the larger interval [0, 2] would not be so convenient because s2(t) varies within that interval.
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is zero (the projection of s2(t) over φ1(t) is null or, equivalently, the angle between
them is π/2).

The last step is normalizing d2(t) before adding it to the basis,

φ2(t) =
d2(t)
√
εd2

=
s2(t)
√
εs2

=
s2(t)√

2
,

where εs2 was computed as

εs2 =

∫ ∞
−∞
|s2(t)|2 dt =

∫ 1

0

12dt+

∫ 2

1

(−1)2dt = 2.

φ2(t) =
s2(t)√

2 2

1√
2

− 1√
2

1 t

φ2(t)

s3(t) We go for the next (third) signal in the given set. We start by computing its
coordinates with respect to all the elements (so far) in the basis.

a31 = 〈s3(t), φ1(t)〉 =

∫ ∞
−∞

s3(t)φ1(t)dt.

The signal to be integrated is

2

1√
2

t

s3(t)φ1(t)

s3(t)φ1(t) =

{
1 · 1√

2
, 0 ≤ t < 2

−1 · 0, 2 ≤ t < 3
=

{
1√
2
, 0 ≤ t < 2

0, 2 ≤ t < 3
,

and hence

a31 = 〈s3(t), φ1(t)〉 =

∫ ∞
−∞

s3(t)φ1(t)dt =

∫ 2

0

1√
2
dt =

2√
2

=
√

2 .

On the other hand,

a32 = 〈s3(t), φ2(t)〉 =

∫ ∞
−∞

s3(t)φ2(t)dt,

with the signal in the integrand being
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2

1√
2

− 1√
2

1 t

s3(t)φ2(t)

s3(t)φ2(t) =


1 · 1√

2
, 0 ≤ t < 1

1 · − 1√
2
, 1 ≤ t < 2

−1 · 0, 2 ≤ t < 3

=


1√
2
, 0 ≤ t < 1

− 1√
2
, 1 ≤ t < 2

0, 2 ≤ t < 3

.

Then, we have

a32 = 〈s3(t), φ2(t)〉 =

∫ ∞
−∞

s3(t)φ2(t)dt =

∫ 1

0

1√
2
dt+

∫ 2

1

−1√
2
dt = 0 .

From the coordinates we compute the difference signal d3(t), which is orthogonal
to all the signals already in the basis,

2 3

−1

t

d3(t)

d3(t) = s3(t)−
2∑
j=1

a3jφj(t)

= s3(t)−
√

2φ1(t)− 0 · φ2(t)

= s3(t)−
√

2φ1(t).

This signal goes into the basis after normalization,

φ3(t) =
d3(t)
√
εd3

= d3(t),

where we have used that

εd3 =

∫ ∞
−∞
|d3(t)|2 dt =

∫ 3

2

|−1|2 dt = 1.

φ3(t) = d3(t) = s3(t)−
√

2φ1(t)

2 3

−1

t

φ3(t)

s4(t) We go for the last (fourth) signal in the set. Again, we first compute its coordinates
with respect to all the elements in the basis. The first coordinate is

a41 = 〈s4(t), φ1(t)〉 =

∫ ∞
−∞

s4(t)φ1(t)dt.

Now, the signal s4(t)φ1(t) is
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2

− 1√
2

t

s4(t)φ1(t)

s4(t)φ1(t) =

{
−1 · 1√

2
, 0 ≤ t < 2

−1 · 0, 2 ≤ t < 3
=

{
− 1√

2
, 0 ≤ t < 2

0, 2 ≤ t < 3
,

and hence we have

a41 = 〈s4(t), φ1(t)〉 =

∫ ∞
−∞

s4(t)φ1(t)dt =

∫ 2

0

− 1√
2
dt = − 2√

2
= −

√
2 .

The second coordinate is

a42 = 〈s4(t), φ2(t)〉 =

∫ ∞
−∞

s4(t)φ2(t)dt,

and we need to integrate

1 2

− 1√
2

1√
2

t

s4(t)φ2(t)

s4(t)φ2(t) =


−1 · 1√

2
, 0 ≤ t < 1

−1 · −1√
2
, 1 ≤ t < 2

−1 · 0, 2 ≤ t < 3

=


− 1√

2
, 0 ≤ t < 1

1√
2
, 1 ≤ t < 2

0, 2 ≤ t < 3

.

Thus,

a42 = 〈s4(t), φ2(t)〉 =

∫ ∞
−∞

s4(t)φ2(t)dt =

∫ 1

0

− 1√
2
dt+

∫ 1

0

1√
2
dt = 0 .

Last, the coordinate of s4(t) with respect to φ3(t) is

a43 = 〈s4(t), φ3(t)〉 =

∫ ∞
−∞

s4(t)φ3(t)dt,

with

2 3

1

t

s4(t)φ3(t)

s4(t)φ3(t) =

{
−1 · 0, 0 ≤ t < 2

−1 · −1, 2 ≤ t < 3

=

{
0, 0 ≤ t < 2

1, 2 ≤ t < 3
.

Then,

a43 = 〈s4(t), φ3(t)〉 =

∫ ∞
−∞

s4(t)φ3(t)dt =

∫ 3

2

1dt = 1 .
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The difference signal is then

d4(t) = s4(t)−
3∑
j=1

a4jφj(t) = s4(t)− a41φ1(t)−���*
0

a42φ2(t)− a43φ3(t)

= s4(t)− (−
√

2)φ1(t)− φ3(t) = s4(t) +
√

2φ1(t)− φ3(t) = 0.

Graphically, what we have is

3

−1

t

+

2

1

t

−

2 3

−1

t

= 0

Signal d4(t) being equal to 0 means that s4(t) can be obtained as a linear combi-
nation of the elements that are already in the basis. Hence, we don’t need to add
any new element to the latter in order to represent s4(t).

Since we don’t have any more signals, the procedure concludes here, and the resulting
basis is

{φ1(t), φ2(t), φ3(t)} .

We stop here because we don’t have any more signals to process (not because the last
difference signal was 0). If we had been given yet another signal, s5(t), our job would
not be done.

When to stop

If we process the signals in a different order, say, e.g., s4(t), s2(t), s1(t) and s3(t), we
will get a different (equally valid) basis. Notice that, in such a case, signal s4(t) will go
into the basis after normalization (while it was irrelevant in the above example).

Order of the signals

2.4.2 Computing the coordinates of the signals with respect to
the orthonormal basis

Given

• a collection of signals, and

• and an orthonormal basis for them,

in order to get a geometric representation of signals, we still need to find the coordinates
of each signal with respect to the basis. We will see this through an example by
computing the coordinates for the previous scenario.
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The coordinates for a certain signal are the coefficients in the linear combination of
elements in the basis that allow to recover the signal. In other words, the coordinates of
si(t) are the aij’s that satisfy

si(t) =
N∑
j=1

aijφj(t). (2.5)

There are two possibilities for obtaining the coordinates.

Using the inner product

We already know one way for computing the coordinates: the inner product (projection),

aij = 〈si(t), φj(t)〉.

Hence, for this particular case we have

a1 →
a11︷ ︸︸ ︷

〈s1(t), φ1(t)〉,
a12︷ ︸︸ ︷

〈s1(t), φ2(t)〉,
a13︷ ︸︸ ︷

〈s1(t), φ3(t)〉
a2 → 〈s2(t), φ1(t)〉, 〈s2(t), φ2(t)〉, 〈s2(t), φ3(t)〉
a3 → 〈s3(t), φ1(t)〉, 〈s3(t), φ2(t)〉, 〈s3(t), φ3(t)〉
a4 → 〈s4(t), φ1(t)〉, 〈s4(t), φ2(t)〉, 〈s4(t), φ3(t)〉.

If we got the basis using Gram-Schmidt, we have already computed some of these.

By inspection

Equation (2.5) here becomes

si(t) = ai1φ1(t) + ai2φ2(t) + ai3φ3(t)

2

1/
√

2

t

φ1(t)

2

1/
√

2

−1/
√

2

1 t

φ2(t)

2 3

-1

t

φ3(t)
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• How do we build

2

1

t

s1(t)

using the signals in the basis?

What should multiply the first element in the basis (i.e., what is the value of a11)?
and the second (a12)? and the third (a13)?

We notice that this signal looks just like φ1(t) but with a different amplitude. Hence,
we just need to scale φ1(t) multiplying it by

√
2 and we are done (we don’t even

need to use φ2(t) or φ3(t)). Therefore, the coordinates for s1(t) would be

a1 =
[√

2 0 0
]

and there is no other possibility because the coefficients are unique!!

• How do we build

2

1

−1

1 t

s2(t)

using the signals in the basis?

In this case, s2(t) resembles φ2(t). Moreover, s2(t) is φ2(t) multiplied by
√

2, and
hence

a2 =
[
0
√

2 0
]
.

• How do we build

3

1

−1

2 t

s3(t)

using the signals in the basis?

The first thing to notice here is that we are finally needing φ3(t) because that’s the
only element in the basis that is non-zero between 2 and 3. On the other hand,
φ1(t) is only defined between 0 and 2, which suits us well here. The combination
we need is

a3 =
[√

2 0 1
]
.
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• How do we build
3

−1

t

s4(t)

using the signals in the basis?

s4(t) is easy to obtain by combining φ1(t) and φ3(t):

a4 =
[
−
√

2 0 1
]

(notice the − sign in the first coordinate: we are turning φ1(t) upside down).

What are the coordinates of the signal

2 3

2

with respect to the above basis? 25

Quick quiz

Our signals now correspond with vectors and hence we can plot them in a geometric
representation

a1

a2

a3a4

−
√

2
√

2

√
2

1

φ1(t)

φ2(t)

φ3(t)

Geometric representation of signals with
respect to the orthonormal basis

A geometric representation is often very useful. Recall that the motivation for rep-
resenting the signals in our modulator as elements in a Hilbert space was being able to
compute easily how close or different two signals are...now we can!! The distance between
two signals is simply the distance between the corresponding vectors.

25 Theyare[00−2]
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2.5 The transmitter

When designing the transmitter there are two possible starting points:

if we know/are given the signals that are going to be used for every information
symbol, we can apply the Gram-Schmidt process to obtain an orthonormal basis,
and then compute the coordinates of each signal with respect to that basis in order
to get the constellation.

if we already have the constellation, in order to get signals in our modulator we
just need to choose a basis, one that fits the characteristics of the channel.

B Encoder Modulator s(t)

It determines the
constellation, and
hence:

• the energy of
the signals

• distance
between signals

It determines:

• waveforms that
will traverse the
channel

A

Gram-Schmidt

choose φi(t), i = 1, · · · , N
(the basis is selected so that the

signal can travel through the channel

The bottom line is:

• The Encoder determines the constellation, {a1, a2, · · · , aM}, and we know:

– The energy of the i-th element is

εsi = |ai|
2 .

and

– The distance between elements i and j is

d(si(t), sj(t)) =

√√√√ N∑
m=1

|aim − ajm|2.

Hence, the encoder determines the energy of the signals and the distance between
them because, once we choose our constellation, they are already fixed regardless
of the orthonormal basis given by the modulator (the energy/distance of the
signals does not depend on the choice of the orthonormal basis: any one will yield
the same energy/distance).

• The Modulator is only concerned with the nature of the channel (baseband vs.
passband).
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What is the connection between the orthonormal basis of the modulator and the energy
of the signals? 26

Quick quiz

2.5.1 Energy of a constellation

Remember that earlier we said that the...

↑ distance between vectors =⇒↓ Pe

Peformance is completely determined by the constellation

Hence, we can always improve the performance in our system (i.e., decrease the Pe) by
increasing the distance between the elements in the constellation... and this can be easily
accomplished by increasing the modulus of all the vectors (i.e., the energy of the signals
because the squared modulus of a vector is the energy of the corresponding signal). For
example, if we have this constellation

a1a2

a3 a4

we can increase the distance between the elements in the constellation just by elongating
the vectors

26 None,theenergyonlydependsontheconstellation(i.e.ontheencoder).
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a1a2

a3 a4

which is tantamount to spending more energy on each signal.
Therefore there is a clear trade-off between performance and energy: if you use more

energy, you get a better performance. Right now we have a well-defined metric for the
performance of a digital communications system: the probability of error, Pe (again, com-
pletely determined by the constellation). However, we don’t have a metric for the energy
of the system. We know how to compute the energy of any element in the constellation,
but how do we compute the energy of the constellation as a whole (or, equivalently,
of the set of signals s1(t), s2(t), · · · , sM(t))? We use the mean energy, which is defined
as

Es =
M∑
i=1

P (si)εsi ,

where

P (si) ≡ the probability of transmitting si(t),

and εsi the energy of the latter. Intuitively, this is the expectation of the energy with
respect to the random variable signal transmitted, si

27.
This parameter is going to very useful to decide between two different constellations

that yield the same performance.

The mean energy is not the arithmetic mean of the energies of the different symbols, but
a weighted average: every symbol is multiplied by the probability of it being transmitted.
What happens most of the time (though not always) is that symbols are equally likely,
in which case the weighted average becomes the arithmetic mean

Es =
M∑
i=1

P (si)εsi =
M∑
i=1

1

M
εsi =

1

M

M∑
i=1

εsi .

Mean energy is a weighted average

27si is a random variable and the energy is a function that depends on that random variable.
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Centered constellation

Any constellation should be centered around 0. Otherwise, we are doing something wrong,
since shifting the constellation apart from 0 increases the mean energy without having
an impact on the performance!! Consider the constellations (of equally likely symbols)

Es = 8
3

Es = 20
3

φ1

-2 0 2
φ1

0 2 4

They exhibit the same performance since the distance between the elements of the
constellation is the same. However, the mean energy on the right is higher. Hence, the
constellations should always be centered around 0.

How do we center a constellation? We simply compute the mean and subtract it from
every vector28. For instance, centering the constellation on the right entails subtracting
from every element in the (1D) constellation (0, 2, and 4) the mean of all of them
(0+2+4

3
= 2).

2.5.2 Example: choosing the best set of signals for transmission

We are given four sets ( A , B , C and D ) of two equally likely signals each, and we
must choose the one giving the best performance using the least amount of energy.

T

+1

t

s1(t)

T

+2

t

s1(t)

T

√
2

s1(t)

T

2

s1(t)

T

−1

t

s2(t)

T t

s2(t)
T

√
2

s2(t)

T

2

s2(t)

A B C D

In order to tackle this problem we will compute and plot the constellation for every
set of signals. This entails first obtaining, in every case, an orthonormal basis.

A The basis is obvious: one signal is the other multiplied by a constant, which means
that a basis with just one signal in the modulator will allow us to build the two
signals. The basis is given by s1(t)...after normalization. In order to normalize
the signal we compute its energy

εs1 =

∫ ∞
−∞
|s1(t)|2 dt = T × 1 = T

28This is always the case irregardless of the dimension, N , of the constellation.
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Hence, the (only) element in the basis is

φ1(t) =
s1(t)
√
εs1

=
s1(t)√
T
.

T

1√
T

t

φ1(t)

What are the coordinates of signals s1(t) and s2(t) with respect to this basis?

a1 =
√
T

a2 = −
√
T

φ1(t)
−
√
T

a2

√
T

a1

(we plot the constellation just like before)

Once we have the constellation, it is very easy to compute the energy of every signal,
and the distances:

• εs1 = |a1|
2 = T = εs2 = Es (mean energy)

• d(s1(t), s2(t)) = d(a1, a2) =
√

(a1 − a2)2 =
√

(
√
T − (−

√
T ))2 =

√
(2
√
T )2 =

2
√
T

B What is the basis now? The same as before!!

T

1√
T

t

φ1(t)

a1 = 2
√
T

a2 = 0
φ1(t)

2
√
T

a1

0

a2

The energy of the signals is then computed using the square modulus of the vectors

εs1 = 4T

εs2 = 0

}
⇒ Es =

1

2
(4T + 0) = 2T,

where we used that the symbols are equally likely.

Notice that the mean energy is twice that required by the previous set of signals.
On the other hand, the distance

d(s1(t), s2(t)) = d(a1, a2) = 2
√
T

is the same as in A 29.

Therefore, if we had to choose between sets A and B , we would pick set A

over set B because they both have the same distance between signals, that is, the

same peformance, but set A takes up half the energy of set B .

C The two signals are opposite of each other, and hence a single element in the basis is
again enough to represent both of them. That element is selected to be s1(t) after

29The problem with this constellation is, of course, that it is not centered.
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normalization. Thus, we need to compute the energy of s1(t)30,

εs1 =

∫ T

0

∣∣∣∣√2 sin

(
2π

T
t

)∣∣∣∣2 dt =

∫ T

0

2 sin2

(
2π

T
t

)
dt

a trigonometric identity comes handy here, 1− cos(2α) = 2 sin2(α)

=

∫ T

0

1dt−
��

���
��

���
�:0∫ T

0

cos

(
2 · 2π

T
t

)
dt = T,

where we have used that the period of the cosine is T/2 since

2 · 2π

T
=

2π
T
2

,

(we multiply the frequency by 2) and hence we are integrating over an integer
number of periods.

Therefore, we have

T

√
2
T

φ1(t)

a1 =
√
T

a2 = −
√
T

φ1(t)
−
√
T

a2

√
T

a1

We have exactly the same constellation what we had for set A . There is no need
to compute again the (mean) energy of the constellation nor the distance between
signals because they only depend on the constellation, and hence they are the same,

Es = T

d(s1(t), s2(t)) = 2
√
T

D In this case the basis is not obvious, and therefore we should apply the Gram-Schmidt
process:

• φ1(t) = s1(t)
√
εs1

=
2 sin( 2π

T
t)√

2T
=
√

2
T

sin
(

2π
T
t
)

εs1 =

∫ T

0

4 sin2

(
2π

T
t

)
dt = 2

∫ T

0

2 sin2

(
2π

T
t

)
︸ ︷︷ ︸

εs1 in C

dt = 2T,

since the signal s1(t) is the equal to the homonymous in the previous set, C ,
but multiplied by

√
2 and

εks =

∫ ∞
−∞
|ks(t)|2 dt = k2

∫ ∞
−∞
|s(t)|2 dt = k2εs,

with k being an arbitrary constant.

30For that, we need the analytical expression of the sine in the picture, which amounts to accounting
for its period, T , and amplitude

√
2.
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T

√
2
T

φ1(t)

• φ2(t) = d2(t)
√
εd2

where

d2(t) = s2(t)− a21φ1(t)

with

a21 = 〈s2(t), φ1(t)〉 =

∫ T

0

2 cos

(
2π

T
t

)√
2

T
sin

(
2π

T
t

)
using the trigonometric indentity sinα cos β = sin(α+β)+sin(α−β)

2

=

∫ T

0
�2

√
2

T

sin
(

2·2π
T
t
)
−����: 0

sin (0)

�2
dt =

√
2

T

∫ T

0

sin

(
2 · 2π
T

t

)
dt = 0.

where the latter equality is due to the fact that we are integrating a sine over
an integer number of periods.

This means sine and cosine are orthogonal!! Then d2(t) = s2(t) and

φ2(t) =
s2(t)
√
εs2

=
2 cos

(
2π
T
t
)

√
2T

=

√
2

T
cos

(
2π

T
t

)
The energy of s2(t) is given by

εs2 =

∫ T

0

|s2(t)|2 dt =

∫ T

0

4 cos2

(
2π

T
t

)
dt

exercise
= 2T.

The second element in the orthonormal basis is

T

√
2
T

φ2(t)

and the constellation

a1 =
(√

2T , 0
)

a2 =
(

0,
√

2T
)

φ1(t)

φ2(t)

√
2T

a1

√
2T a2

Notice this is not a centered constellation. If you want to center it, you need
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to subtract the mean,

ā =
a1 + a2

2
=

(√
2T

2
,

√
2T

2

)
,

from every element.

The energy (already computed), and distance are

εs1 = εs2 = Es = 2T

d(s1(t), s2(t)) = |a1 − a2| =
√

(
√

2T − 0)2 + (0−
√

2T )2 =
√

4T = 2
√
T .

The distance between elements of the constellation is the same in every set (same
performance), but the energy consumption changes. We would also have to take into
account the nature of the channel: if the channel is baseband we cannot use sines or
cosines.

2.6 Demodulator

So far, we have been talking about the transmitter. The demodulator is at the other end
of the channel. In other words, it is already part of the receiver.

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A+ n

transmitter receiver

Right now, we forget about the encoder and detector, and focus only on the modula-
tion/demodulation operations

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A+ n

transmitter receiver

ai si(t)

We can annotate the picture to better indicate what’s going on at every stage:
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• A will be one of the elements in the constellation, say,

ai =


ai1
ai2
...
aiN


• which the modulator will turn into a signal, si(t).

We know that the components of vector ai are actually the coordinates of signal
si(t) with respect to the orthonormal basis in the modulator, so that si(t) can be
expressed as a linear combination of the elements in the orthonormal basis,

si(t) =
N∑
j=1

aijφj(t)

• Thermal noise, n(t), is added to the transmitted signal, si(t), when the latter goes
through the AWGN channel, and that results in the

• received signal, r(t), which makes up the input to the demodulator.

Notice that

• A is a random vector whereas ai is a particular realization (value), and

• s(t) is a random process whereas si(t) is a deterministic signal.

The transmitter knows which ai or, equivalently, which si(t) was transmitted, but from
the standpoint of the receiver we have

B → A → s(t)
r.v. random vector random process

We don’t use any subindex when we refer to things that are random. On the con-
trary, when we add a subindex we refer to a realization of the corresponding random
variable/vector/process.

Random variable v. realization

Looking at the picture, the modulator turns an element from the constellation, ai,
which is a vector encompassing a set of coordinates, into a signal si(t). The demod-
ulator does the opposite: it turns a signal, the received signal, r(t), into a set of
coordinates that are collected in vector q. Notice the received signal, r(t), is contami-
nated with noise, and hence is not any of the signals si(t).

So, how does the demodulator obtain coordinates from the received signal, r(t)? It
computes its projection on the Hilbert space spanned by the orthonormal basis {φ1(t),
φ2(t), · · · , φN(t)}. Therefore, vector q is the projection of the received signal r(t) on the
orthonormal basis {φ1(t), φ2(t), · · · , φN(t)}, with the j-th component in the vector, qj,
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being the projection on the axis φj(t). And how do we compute projections? By means
of the inner product. Let us investigate the structure of an individual component, qj. We
have

qj = 〈r(t), φj(t)〉 =

∫ T

0

r(t)φ∗j(t)dt

we keep the uncertainty about the signal transmitted: we use the stochastic process s(t)
rather than a realization thereof (the receiver doesn’t know which si(t) was transmitted)

=

∫ T

0

(s(t) + n(t))φ∗j(t)dt =

∫ T

0

s(t)φ∗j(t)dt+

∫ T

0

n(t)φ∗j(t)dt︸ ︷︷ ︸
r.v.nj

=

∫ T

0

s(t)φ∗j(t)dt+ nj

Signal s(t) is one of the elements in the set {s1(t), s2(t), · · · , sM(t)}, but we don’t know
which one. That’s why s(t) is a random process. But, what are the coordinates of signal
s(t) with respect to the elements in the orthonormal basis? They are the components of
vector A, which can be written as

A =


A1

A2
...
AN

 .
Of course, A is a random vector that takes values in the set {a1, a2, · · · , aM} (recall the
picture, it must be one of the elements in the constellation). Every element in a random
vector is a random variable, and hence every Aj is a random variable.

From the coordinates of the corresponding element in the constellation and the or-
thonormal basis we can express s(t) as

s(t) =
N∑
l=1

Alφl(t),

and plugging this into qj we have

qj =

∫ T

0

s(t)φ∗j(t)dt+ nj =

∫ T

0

N∑
l=1

Alφl(t)φ
∗
j(t)dt+ nj =

N∑
l=1

Al

∫ T

0

φl(t)φ
∗
j(t)dt︸ ︷︷ ︸

〈φl(t),φj(t)〉

+nj

=
N∑
l=1

Al〈φl(t), φj(t)〉+ nj = Aj + nj,

where, again, we have used

〈φl(t), φm(t)〉 =

{
0, l 6= m

1, l = m
.
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We can do the same for every qj, with j = 1, · · · , N , to get

q =


q1

q2
...
qN

 =


A1 + n1

A2 + n2
...

AN + nN

 =


A1

A2
...
AN

+


n1

n2
...
nN

 = A+ n.

That is, q is the element of the constellation transmitted, A, plus a vector of noise, n. In
other words, q is a noisy estimate of A. Ideally, in order to minimize the number of
errors, the distance between q and A should be as small as possible or, equivalently, the
noise vector should be close to zero.

In summary,

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A+ n

transmitter receiver

Sometimes, we can forget about the modulation/demodulation operations and work with
a model that is a simplification of the real thing

Definition 2.6.1: Equivalent discrete-time channel

+

n

A q

Equivalent discrete-time channel

We transmit a vector, A, which gets mixed with some noise, n, to give vector q, which
is what, ultimately, the detector gets to observe. The nice thing about this model is that
it allows us to work in a discrete-time world.

What component or components in our digital communications system are affected if
we change the orthonormal basis used to build the signals transmitted? 31

Quick quiz

31

Weareaffectingboththemodulatorandthedemodulator.Thebasisisusedbytheformertoassemble
thesignalstransmitted,andbythelattertoprojectthereceivedsignalintotheHilbertspaceofsignals
encompassingtheconstellation.

87



2.6.1 Block diagram of the demodulator

We now know how to compute every coordinate in vector q at the output of the demod-
ulator. This is illustrated by the block diagram32

×
∫ T

0
·dt q1

×
∫ T

0
·dt q2

r(t) ... ... ...

×
∫ T

0
·dt qN

φ∗1(t)

φ∗2(t)

φ∗N(t)

Correlator-based receiver

This is known as the correlator-based receiver. In order to understand the reason
behind the name, let us review the concept of

Definition 2.6.2: Cross-correlation between two signals...

...f(t) and g(t) is

Rfg(τ) =

∫ ∞
−∞

f(t)g∗(t+ τ)dt

Notice that the expression on the right-hand side kind of resembles the inner product.
Let us now bring back the expression for computing the j-th component in vector q:

qj = 〈r(t), φj(t)〉 =

∫ ∞
−∞

r(t)φ∗j(t)dt =

∫ ∞
−∞

r(t)φ∗j(t+ 0)dt = Rrφj(0),

i.e., qj is the cross-correlation between r(t) and φ∗j(t) evaluated at τ = 0. Therefore,
the projection of signal r(t) on the basis {φ1(t), φ2(t), · · · , φN(t)} can be interpreted as
a cross-correlation, evaluated at τ = 0, between the received signal and each element in
the basis. Notice that

• we have as many branches as coordinates, and

• we need the elements in the orthonormal basis, φi(t), i = 1, · · · , N .

32Here we are assuming that the signals of the modulator, s1(t), s2(t), · · · , sM (t), are non-zero only in
the interval [0, T ].
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2.7 Statistical characterization of vector q

Earlier, we talked about the equivalent discrete-time channel

q = A+ n

which is a simplified model for the transmission in a digital communications system.
According to this model, the observations vector, q, is the sum of two random vectors,
and hence it is itself a random vector. As such, it has a probability density function

fq = fq1,q2,··· ,qN

(the pdf of a random vector is simply the joint pdf of its components).
Let us study the marginal pdf of any arbitrary random variable within vector q,

qj = Aj + nj,

which is the sum of two random variables:

Aj, a discrete random variable taking values in the set {a1j, a2j, · · · , aMj}, and

nj, a continuous random variable that is obtained by integrating the Gaussian process
n(t) (defined in Section 2.6),

nj =

∫ T

0

n(t)φ∗j(t)dt.

2.7.1 Noise, nj

We first focus on the noise term, nj. Since it’s Gaussian, it is perfectly characterized by
its mean and variance.

X ∼ N
(
µ, σ2

)
⇒ fX(x) =

1

2πσ2
e−

(x−µ)2

2σ2

Probability density function of a Gaussian random variable

Let us compute those. The mean is

E [nj] = E
[∫ T

0

n(t)φ∗j(t)dt

]
expectation of the integral is the integral of the expectation

=

∫ T

0

E
[
n(t)φ∗j(t)

]
dt

φj(t) is known, and hence deterministic

=

∫ T

0

E [n(t)]φ∗j(t)dt
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thermal noise has zero mean

=

∫ T

0

0 φ∗j(t)dt = 0

Now we compute the covariance between any two noise components, nj and nk as

σ2
njnk

= E [(nj − 0)(nk − 0)∗] = E [njn
∗
k] .

Notice that when j = k, the above expression amounts to the (individual) variance of the
j-th noise component. That is,

E [njn
∗
k] =

{
covariance between variables nj and nk, j 6= k

variance of variable nj, j = k
,

and hence when computing the above covariance for arbitrary j and k, we get for free
the variance of any noise variable.

E [njn
∗
k] = E

[∫ T

0

n(t)φ∗j(t)dt

∫ T

0

n∗(u)φk(u)du

]
only n(t) and n(u) are random

=

∫ T

0

∫ T

0

E [n(t)n∗(u)]φ∗j(t)φk(u)dtdu

what we have here is the autocorrelation function evaluated at t−u, E [n(t)n∗(u)] = Rn(t−
u); on the other hand, we know that n(t) is white33(Additive White Gaussian Noise) and,
moreover, we know its autocorrelation function Rn(τ) = N0

2
δ(τ), hence E [n(t)n∗(u)] =

N0

2
δ(t− u)

=
N0

2

∫ T

0

∫ T

0

δ(t− u)φ∗j(t)φk(u)dtdu

φk(u) does not depend on t, and hence can be pulled out of the inner integral

=
N0

2

∫ T

0

φk(u)

[∫ T

0

δ(t− u)φ∗j(t)dt

]
du

δ(t− u)φ∗j(t) is a delta at time u with amplitude φ∗j(u), hence when you integrate it you
get the amplitude φ∗j(u) (notice that u is between 0 and T , and thus a delta at u is
captured by an integral from 0 to T )

=
N0

2

∫ T

0

φk(u)φ∗j(u)du =
N0

2
〈φk(u), φj(u)〉 =

{
N0

2
, j = k

0, otherwise
.

In summary, what we have is

33White process implies WSS.
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• σ2
nj

= E
[
n2
j

]
= N0

2
, i.e., the variance of any noise variable is N0

2
,

•
σ2
njnk

= 0, j 6= k ⇒ the noise variables are uncorrelated

the noise variables are Gaussian

}
⇒

the noise variables, nj
with j = 1 · · ·N , are
independent!!

This means, we know the...

n =


n1

n2
...
nN

 ∼ N



0
0
...
0

 ,

N0

2
0 · · · 0

0 N0

2

. . .
...

...
. . . . . . 0

0 · · · 0 N0

2


 = N

(
0,
N0

2
I

)
,

...distribution of the noise vector

and hence we have an expression for its pdf34.

fn(n) = fn1,n2,··· ,nN (n1, n2, · · · , nN) =
N∏
j=1

fnj(nj) =
N∏
j=1

1√
�2πN0

�2

e
−

(nj−0)2

�2
N0

�2 .

2.7.2 Observation qj

Now we know the distribution of the noise, and taking advantage of it we aim at char-
acterizing the pdf of the observation qj = Aj + nj. This is hard to do since we don’t
know neither Aj nor nj (both are random variables, the former discrete and the latter
continuous). However, it would be a completely different story if we knew Aj. Let us
focus on computing

fqj |Aj=aij ≡
the pdf of j-th observation, qj, conditional on the j-th component of
the transmitted vector being that corresponding to the i-th element
in the constellation, ai,

which will be enough for our purposes. Notice that assuming Aj = aij is tantamount to
assuming ai was the element from the constellation transmitted.

How can we compute the above pdf? What is the distribution of qj = Aj + nj when
Aj = aij? In such case we have

qj = aij︸︷︷︸
known

constant...we

know the

constellation!!

+ nj︸︷︷︸
Gaussian r.v.

with zero mean

and variance

σ2
n = N0

2

.

Now, nj is a Gaussian random variable with zero mean and variance N0/2, and we are
simply adding a known constant to it. That amounts to modifying the mean of the r.v.

34Notice that here we are slightly abusing notation in denoting the same way a random variable and
its realization. It’s very common.
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Therefore qj|Aj = aij is a random variable with the same distribution as nj but mean
0 + aij, i.e.,

qj|Aj = aij ∼ N
(
aij,

N0

2

)
⇒ fqj |Aj=aij =

1√
πN0

e
−

(qj−aij)
2

N0 .

So far, we have characterized the pdf of a single component, qj, in the vector of
observations, but we still need to characterize the conditional pdf of the whole vector,

fq|A(q | ai),

i.e., the pdf of vector q conditional on the element of the constellation transmitted being
ai. We can reason in an analogous way: if n is a Gaussian random vector distributed
according to n ∼ N

(
0, N0

2
I
)
, then adding to it a known (deterministic) vector ai to get

q = ai + n

just shifts the distribution35, i.e., changes its mean from 0 to 0 + ai = ai. Then, we know
the...

q | A = ai ∼ N
(
ai,

N0

2
I
N

)
.

...conditional distribution of the observations vector

Notice that the individual random variables inside vector q are independent because they
are uncorrelated (every covariance is 0) and Gaussian. We can exploit this36 to write the
mathematical expression for the pdf of q,

fq|A
(
q | ai

)
= fq1,q2,··· ,qN |A1,A2,··· ,AN (q1, q2, · · · , qN | ai1, ai2, · · · , aiN)

indep.
=

N∏
j=1

fqj |Aj (qj | aij) =
N∏
j=1

1

(πN0)1/2
e
−

(qj−aij)
2

N0

=
1

(πN0)N/2
e
−

∑N
j=1(qj−aij)

2

N0

what we have in the numerator of the exponential is the squared Euclidean distance
between q and ai squared

=
1

(πN0)N/2
e
− d

2(q,ai)

N0 (2.6)

At the sight of this result, the smaller the distance between vectors q and ai (the more
similar they are), the higher the value of this pdf, which intuitively makes sense: if we
condition on a symbol ai which is close to q, then the density is large.

35True for Gaussian random variables/vectors, but not for every distribution.
36The joint pdf of a collection of random variables is the product of the marginal pdf’s.
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a1a2

a3 a4

q

d(a1, q) < d(a2, q)⇒ fq|A
(
q | A = a1

)
> fq|A

(
q | A = a2

)

Elements closer to q yield a larger value for the pdf

2.8 Matched filter-based demodulator (matched re-

ceiver)

Earlier, we saw how to implement the demodulator by means of correlators, and now we
are going to see an equivalent implementation using filters.

Specifically, we want qj to be a sample at the output of an LTI system (notice that at
the output of the filter we get a signal rather than a number!!), i.e., the “old” construction
using a correlator is replaced with a filter and a sampler,

×
∫ T

0
·dt

φ∗j(t)

r(t) qj >< hj(t)r(t)
qj(t)

qj

t =?

qj =

∫ ∞
−∞

r(u)φ∗j (u)du
qj = qj(t)

∣∣∣
t=?

= r(t) ∗ hj(t)
∣∣∣
t=?

=

∫ ∞
−∞

r(u)hj(t− u)du
∣∣∣
t=?

In order for the two expressions to yield the same result we need to choose

• hj(t), and

• the sampling time.

If we sample at time t = 0, then the expression using a linear filter becomes very close
to that using a correlator,

qj = qj(t)
∣∣∣
t=0

=

∫ ∞
−∞

r(u)hj(−u)du
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and we just need to choose hj(t)...how do we do it? It is straightforward: we choose
hj(−u) = φ∗j(u)⇒ hj(u) = φ∗j(−u)

=

∫ ∞
−∞

r(u)φ∗j(u)du.

We say that hj(t) is a filter matched to the signal φj(t) and, in general,

Definition 2.8.1: Matched filter

A filter with impulse response h(t) = x∗(−t) is matched to the signal x(t).

A matched filter can be though of as a signal detector (for the corresponding signal
it is matched to).

In summary, what we have is

×
∫ T

0
·dt

φ∗j(t)

r(t) qj >< φ∗j(−t)r(t) qj

t = 0

One “problem” with the implementation of this filter is that if φj(t) is a signal between
0 and T (this is the case for us), e.g.,

T

φj(t)

then

T

φj(−t)

is not a causal filtera (it is anti-causal), which implies that the output of the filter at a

There is a catch...
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certain time instant depends on future inputs. In other words, in order to compute the
output of the filter at time t, you need the inputs from time t up to t+ T .

aFor an LTI system to be causal the impulse response must be zero on the negative part of the time
axis.

How can we fix this? We can simply add some delay to the filter in order to make it a
causal filter37.

T

φj(t)

T

φj(−t)

T

φj(T − t)

Then, what we have now is

φ∗j(T − t)r(t)
qj
′(t)

qj

t =?

and the output of the filter is not the same as before38,

q′j(t) = r(t) ∗ h′j(t) =

∫ ∞
−∞

r(u)φ∗j(T − (t− u))du =

∫ ∞
−∞

r(u)φ∗j(T − t+ u)du,

and if we want to get the same result as before we need to evaluate the convolution at
time T ,

q′j(T ) =

∫ ∞
−∞

r(u)φ∗j(��T −��T + u)du =

∫ ∞
−∞

r(u)φ∗j(u)du,

which is exactly what we were looking for: the result given by the correlator. We had
this coming: what happens to the output of an LTI system when we delay the impulse
response? The output gets equally delayed39. So, if earlier we were sampling at 0, now
we should be sampling at T (because that’s the delay we applied to the filter), and we
have that these two implementations are equivalent

×
∫ T

0
·dt

φ∗j(t)

r(t) qj >< φ∗j(T − t)r(t) qj

t = T

37We obtain a causal filter from an anti-causal filter by shifting the filter to the right.
38That’s why we write the prime.
39In an LTI system, a shift at the input, or impulse response, yields the same shift at the output.
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Notice that, in this last implementation, in order to get the output of the filter at time
t, we need to wait until time t+ T (it’s not a problem: T is usually very short).

In summary, we have two additional implementations for the demodulator

φ∗1(−t) q1

φ∗2(−t) q2

r(t) ... ... ...

φ∗N(−t) qN

t = 0

t = 0

t = 0

Matched filters-based receiver

><

φ∗1(T − t) q1

φ∗2(T − t) q2

r(t) ... ... ...

φ∗N(T − t) qN

t = T

t = T

t = T

Causal matched filters-based receiver

Both are equivalent to each other, and also to the correlators-based one we saw earlier.

An important property of the matched filter: the matched filter maximizes the SNR.
This means the SNR at every qj is maximum (notice that qj = Aj + nj has a signal
component, Aj, and a noise component, nj).

Recall that

si(t) =
N∑
j=1

aijφj(t) = ai1φ1(t) + ai2φ2(t) + · · · aiNφN(t).

The first branch of the demodulator aims at detecting the coefficient that multiplies φ1(t),
the second branch that which multiplies φ2(t), and so forth and so on. In the next section
we prove that if you want to detect a certain signal (whatever that is) contaminated with
noise, a matched filter will yield maximum SNR.

2.8.1 Properites of the matched filter: Maximum Signal-to-
noise ratio

Implementing the demodulator using matched filters instead of correlators doesn’t provide
any benefit in terms of operation (they both are equivalent and do the same thing!!).
However, thinking about the demodulator in terms of filtering allows to easily derive
some properties...and the most important property is that our modulator maximizes the
signal-to-noise ratio (SNR)40. Recall that

↑ SNR⇒↑ performance of the system.

We have a scheme like this

40Remember: it’s the ratio between the power of the signal and that of the noise. It’s a metric of the
quality of a system, and we’d like the SNR to be as high as possible.
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+ h(t)

n(t)

s(t)
q(t) = r(t) ∗ h(t) = s(t) ∗ h(t)︸ ︷︷ ︸

y(t)

+n(t) ∗ h(t)︸ ︷︷ ︸
z(t)

S
N

∣∣
r

= Ps
Pn

S
N

∣∣
q

= Px
Pu

r(t)

in which the signal of interest, s(t), is known.
At the output of the filter, the signal of interest is x(t) (the filtered version of the

signal of interest at the input).
Ideally,

S

N

∣∣∣∣
q

≥ S

N

∣∣∣∣
r

,

that is, the SNR at the output of the filter is higher than the one we had at the input
⇒ the filter alleviates the noise, it doesn’t add more. Now, we’ll prove that if h(t) is
adapted to s(t) (the signal of interest!!), then the SNR of q is maximum.

We start from the scheme we saw before, but we sample the output at t = 0 (the same
way we did in the implementation of the demodulator). We only care about the SNR at
the sampling instant.

+ h(t)

n(t)

s(t) q

t = 0
r(t) q(t)

The output of the filter is

q(t) = s(t) ∗ h(t) + n(t) ∗ h(t) =

∫ ∞
−∞

s(τ)h(t− τ)dτ +

∫ ∞
−∞

n(τ)h(t− τ)dτ,

and sampling at time t = 0 we get

q(0) =

∫ ∞
−∞

s(τ)h(−τ)dτ︸ ︷︷ ︸
y

+

∫ ∞
−∞

n(τ)h(−τ)dτ︸ ︷︷ ︸
z

= y + z.

Of course, q(0) is a number, and so are y and z.
Now, the SNR of q = q(0) is

S

N

∣∣∣∣
q

=
E [y2]

E [z2]
y is deterministic

=
y2

E [z2]
.

We compute separately numerator and denominator...but before that we need to re-
view the...
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The Cauchy–Schwarz inequality states that for all vectors x, y ∈ V , where V is a vector
space with an inner product defined, it holds that

|〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉

with equality when x and y are linearly dependent, that is, x = K · y.
With our definition of inner product, this is∣∣∣∣∫ ∞

−∞
x(t)y(t)dt

∣∣∣∣2 ≤ ∫ ∞
−∞

x2(t)dt

∫ ∞
−∞

y2(t)dt

Cauchy–Schwarz inequality

Let’s go back to computing the SNR:

power of the noise

E
[
z2
]

= E
[∫ ∞
−∞

n(τ)h(−τ)dτ

∫ ∞
−∞

n(u)h(−u)du

]
=

∫ ∞
−∞

∫ ∞
−∞

E [n(τ)n(u)]h(−τ)h(−u)dτdu

=
N0

2

∫ ∞
−∞

∫ ∞
−∞

δ(τ − u)h(−τ)h(−u)dτdu =
N0

2

∫ ∞
−∞

h(−u)

[∫ ∞
−∞

δ(τ − u)h(−τ)dτ

]
du

=
N0

2

∫ ∞
−∞

h(−u)h(−u)du =
N0

2

∫ ∞
−∞

h2(−u)du

power of the signal

y2 =

(∫ ∞
−∞

s(τ)h(−τ)dτ

)2
Cauchy-Schwartz

≤
∫ ∞
−∞

s2(τ)dτ

∫ ∞
−∞

h2(−τ)dτ = εs

∫ ∞
−∞

h2(−τ)dτ.

(2.7)

Then, the SNR of q is

S

N

∣∣∣∣
q

=
y2

E [z2]
=

(∫∞
−∞ s(τ)h(−τ)dτ

)2

N0

2

∫∞
−∞ h

2(−u)du
≤

εs
���

���
��∫∞

−∞ h
2(−τ)dτ

N0

2 ���
��

���∫∞
−∞ h

2(−τ)dτ
=

2εs
N0

,

that is, the SNR at the output is always less than or equal to 2εs
N0

. But, according to the
Cauchy-Schwartz theorem, we know that we get equality in (2.7) when one of the signals
is a scaled version of the other, i.e., here when

h(−t) = Ks(t).

If h(t) is a filter matched to s(t), then

h(t) = s(−t)⇒ h(−t) = 1 · s(t),

and we have equality in (2.7), that is,

y2 = εs

∫ ∞
−∞

h2(−τ)dτ,

98



which, in turn, means that the SNR at the output is maximum,

S

N

∣∣∣∣
q

=
2εs
N0

.

Recall our filters-based implementation of a demodulator

φ∗1(T − t) q1 maximum SNR

φ∗2(T − t) q2 maximum SNR

r(t) ... ... ...

φ∗N(T − t) qN maximum SNR

t = T

t = T

t = T

and hence we are detecting every component (coordinate) in our signal with maximum
SNR.

2.9 Detector

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A+ n

transmitter receiver

We have studied the first component of the receiver, and now we are going to discuss
the other one, which is also the last component in our digital communications system:
the detector. Its goal is to make a decision about which symbol was transmitted based
on the observations vector q.

At the beginning of this module we saw that the design criterion/rule for the detector
is to minimize the probability of error. Hence, we are going to analyze the connection
between the decisions we make and the probability of error.

Let us assume the demodulator computes (yields at its output) a vector q = q
0

(q
0

is

a realization of random vector q) to which the detector assigns the symbol B̂ = bi, i.e,

q = q
0

B̂ = bi.
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B Encoder Modulator + Demodulator Detector B̂ = bi

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = q
0

transmitter receiver

Then, our goal is to compute the probability of this being an erroneous decision. We will
denote it as Pe(B̂ = bi, q = q

0
), i.e., this is the probability of an erroneous decision when

the vector of observations is q
0

and we decide bi,

Pe(B̂ = bi, q = q
0
) , P (B 6= bi | q = q

0
)

this is 1 minus the probability of the complementary event

= 1− P (B = bi | q = q
0
)

we are going to write this probability in a more compact manner

= 1− pB|q(bi | q0
)︸ ︷︷ ︸

probability of
being right

(2.8)

This is the probability of error when we decide the symbol bi and the observations vector
is q

0
...but what we are really interested in is the probability of error when we decide bi

regardless of the observed vector (the mean probability of error). We can obtain it by
averaging the latter with respect to q

0
. It’s given by the same expression we had before

but now without conditioning on a particular observation,

Pe(B̂ = bi) = P (B 6= bi)

using the law of total probability41

=

∫
RN
P (B 6= bi | q0

)fq(q0
)dq

0

using (2.8)
=

∫
RN

(
1− pB|q(bi | q0

)
)
fq(q0

)dq
0

=

∫
RN
fq(q0

)dq
0
−
∫
RN
pB|q(bi | q0

)fq(q0
)dq

0
= 1−

∫
RN
pB|q(bi | q0

)fq(q0
)dq

0

Some remarks here:

• In order to minimize this probability we need to maximize the resulting integral by
choosing bi for every value of q

0
42.

• The function inside the integral is always positive

pB|q(bi | q0
)︸ ︷︷ ︸

≥0

fq(q0
)︸ ︷︷ ︸

≥0

≥ 0,

and hence the integral gets maximized if we maximize the value of this function
(with respect to bi) for every possible q

0
43. In other words, the maximum is achieved

if every addend (in the integral’s infinite summation) is maximum.

41P (A) =
∫∞
−∞ P (A | X = x)fX(x)dx.

42The detector receives q
0

as input and its only purpose/task is choosing the output, bi, for that input.
43For every q

0
we choose an appropriate bi.
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• the factor fq(q0
) inside the integral does not depend on the decision we make, that

is, the detector cannot affect this term, so we can forget about it when maximizing,
and we only need to care about maximizing

pB|q(bi|q0
),

which is the probability of the symbol transmitted being equal to bi when we have
observed vector q

0
.

In summary,

min
bi

Pe(B̂ = bi)︸ ︷︷ ︸
the probability of error

when we decide B̂ = bi

⇔ max
bi

pB|q(bi|q0
) ∀q

0
≡ Maximum A Posteriori

(MAP) rule

We will see in a minute the reason behind the naming. For now, just notice that both
minimization and maximization are with respect to bi. The above result goes to say that
if you want to minimize the mean error probability, then for every observations vector,
q

0
, you need to choose bi so that it maximizes the probability of the symbol transmitted,

B, at the sight of those observations.
Some notation we will be using from now on:

• pB|q(bj|q0
), j = 1, · · · ,M are called posterior probabilities: they are the prob-

abilities of the symbols once we know the observations vector q
0

(the observations
provide information about the symbol transmitted),

and as opposed to them we have

• pB(bj), j = 1, · · · ,M are the prior probabilities of the symbols: they are the
probabilities of the symbols before seeing the observations. Most of the time, the
symbols will be equally likely.

What is the meaning of this MAP rule in practice? Given a vector of observations, q
0
,

the detector must compute the (finite!!) set of probabilities
{
pB|q(bj|q0

), j = 1, · · · ,M
}

and choose bi such that
pB|q(bi|q0

) > pB|q(bj|q0
) ∀j 6= i.

If
pB|q(bi|q0

) = pB|q(bk|q0
) > pB|q(bj|q0

) ∀i 6= j 6= k,

i.e., there is a tie between symbols i and k, the detector decides bi or bk arbitrarily and
that does not affect the probability of error.

This completely determines the operation of the detector, and now our task is to find
a closed-form expression for computing the posterior probabilities pB|q(bi|q0

) (we don’t

know how to compute this directly). We apply Bayes theorem to get44

pB|q(bi | q0
) =

fq|B(q
0
| bi)pB(bi)

fq(q0
)

44Recall that we use f to denote pdf’s (rather than pmf’s).
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since B = bi ⇔ A = ai (these two conditions are the same because we have a one-to-
one mapping between information symbols and elements in the constellation), we have
fq|B(q

0
| bi) = fq|A(q

0
| ai)

=
fq|A(q

0
| ai)pB(bi)

fq(q0
)

.

Then,

pB|q(bi|q0
) > pB|q(bj|q0

), ∀j 6= i

⇓
fq|A(q

0
| ai)pB(bi)

fq(q0
)

>
fq|A(q

0
| aj)pB(bj)

fq(q0
)

, ∀j 6= i,

but fq(q0
) is positive and independent of the symbol transmitted (it’s a constant in the

comparisons!!). Hence, we can simplify the above inequality and the MAP rule amounts
to...

Choose bi such that

fq|A(q
0
| ai)pB(bi) > fq|A(q

0
| aj)pB(bj), ∀j 6= i

(notice that the expressions being compared are likelihoods times prior probabilities).

MAP rule

In summary, given q = q
0
, the MAP rule proceeds by

1. computing
fq|A(q

0
| a1)pB(b1)

fq|A(q
0
| a2)pB(b2)

...
fq|A(q

0
| aM)pB(bM)

2. choosing the maximum, and deciding its corresponding bi,

that is, we compute the above product for every element in the constellation and choose
the one that yields the maximum.

What is the maximum value fq|A(q
0
| ai) can take? 45

Quick quiz

45

Justlikeanyprobabilitydensityfunction,fq|Aisunboundedabove(thoughalwaysgreaterthanorequal

to0).
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The pdf fq|A(q
0
| ai) is know as the likelihood (here, of ai). A likelihood is always the

probability (or probability density) of some (known) observation(s) conditional on some
unknown parameter(s) we are interested in.

Likelihood

2.9.1 Example I

• M = 2, N = 1

• noise is AWGN

• equally likely symbols

(q and A are scalars)

φ1(t)
−
√
T

a1

√
T

a2

If the output of the demodulator is q = q
0
, we have to compute

fq|A(q
0
| −
√
T )p(b1), and fq|A(q

0
|
√
T )p(b2). (2.9)

Since the noise is Gaussian, we know the distribution of the observations vector con-
ditional on the symbol transmitted46

q | A = ai ∼ N
(
ai,

N0

2
I
N

)
,

and hence

q | A = −
√
T ∼ N

(
−
√
T ,
N0

2

)
q | A =

√
T ∼ N

(√
T ,
N0

2

)
.

Since the above random variables are Gaussian (with known mean and variance), we
know their pdf’s (the f ’s), and the expressions to be compared when applying the MAP
rule in (2.9) are simply functions of q (above evaluated at q = q0) given by the product
of a Gaussian pdf (each one with its own mean) and a constant equal to 1/2 (the prior
probability of each symbol).

−0.5
√
T 0.25

√
T−

√
T

√
T

fq|A(0.25
√
T | −

√
T )p(b1)

fq|A(0.25
√
T |
√
T )p(b2)

fq|A(−0.5
√
T |
√
T )p(b2)

fq|A(−0.5
√
T | −

√
T )p(b1)

fq|A(q
0
| −
√
T )p(b1) fq|A(q

0
|
√
T )p(b2)

q

46If the noise is not Gaussian, then we have to figure things out again just like we did in Section 2.7.
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We can apply the MAP rule for several values of q0:

• if q0 = 0.25
√
T

fq|A(0.25
√
T |
√
T )p(b2) > fq|A(0.25

√
T | −

√
T )p(b1)

and we decide B̂ = b2

• if q0 = −0.5
√
T

fq|A(−0.5
√
T | −

√
T )p(b1) > fq|A(−0.5

√
T |
√
T )p(b2)

and we decide B̂ = b1.

If we are given a particular q0, there is no need to plot these functions to make a
decision, but if we do, we can immediately see the decision to be made for every value of
q0. For which values of q0 should we decide b1? and b2? Intuitively, we can see that

• we decide b1 if q0 ≤ 0⇔ q0 ∈ I1 = (−∞, 0]

• we decide b2 if q0 ≥ 0⇔ q0 ∈ I2 = [0,∞).

qt = 0 is known as the decision threshold, and we say that

I1 ≡ decision region for b1

I2 ≡ decision region for b2.

So now you know what to decide for every value of q0. Notice that a detection error
happens when the observation q0 falls outside the decision region of the symbol actually
transmitted. If q0 falls within the region Ii then, according to the MAP rule (which is
optimal), we should decide bi. This means, that when we transmit bi, there is no error as
long as q0 falls within the decision region Ii.

Why is the decision threshold at qt = 0? Because it’s the value at which the two
curves cross/intersect, i.e., the value of q0 satisfying

fq|A(qt | A = −
√
T )p(b1) = fq|A(qt | A =

√
T )p(b2).

2.9.2 Example II

• M = 2, N = 1

• noise is AWGN

• p(b2) > p(b1)

φ1(t)
−
√
T

a1

√
T

a2

(same constellation as before)

−0.5
√
T 0.25

√
T−

√
T

√
T

fq|A(q
0
| −
√
T )p(b1)

fq|A(q
0
|
√
T )p(b2)

q
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The decision threshold has shifted. Let us see what happens for the same (example)
values of q0 we investigated before:

• if q0 = 0.25
√
T

fq|A(0.25
√
T |
√
T )p(b2) > fq|A(0.25

√
T | −

√
T )p(b1)

and we decide B̂ = b2

• if q0 = −0.5
√
T (right after the decision threshold)

fq|A(−0.5
√
T |
√
T )p(b2) > fq|A(−0.5

√
T | −

√
T )p(b1)

and we decide B̂ = b2.

Since the probability of transmitting b2 is larger than that of transmitting b1, it’s only
natural that we decide b2 more often than we decide b1. Hence, the probability of the
symbols matters when making decisions

2.9.3 Maximum Likelihood (ML) rule

If the symbols are equally likely (the usual scenario), the MAP rule for decision can be
simplified. Given q = q

0
, we need to solve the optimization problem

max


fq|A(q

0
|a1)p(b1)

fq|A(q
0
|a2)p(b2)
...

fq|A(q
0
|aM)p(bM)


p(b1)=p(b2)=···p(bM )

= max


fq|A(q

0
|a1)

fq|A(q
0
|a2)

...
fq|A(q

0
|aM)


and the result is the...

Choose bi such that
fq|A(q

0
|ai) > fq|A(q

0
|aj)∀j 6= i.

Maximum Likelihood (ML) rule

This is true as long as the symbols are equally likely (very common!!).

2.9.4 Proximity rule

Additionally, if the noise is Gaussian (and only in that case!!), we have

fq|A(q
0
|ai) > fq|A(q

0
|aj) ∀j 6= i

⇓

�
�
�
�
��1

(πN0)N/2
e
−
d2(q

0
,ai)

N0 >

�
�
�
�
��1

(πN0)N/2
e
−
d2(q

0
,aj)

N0 ∀j 6= i
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we take logs at both sides of the inequality

⇓
−d2(q

0
, ai) > −d2(q

0
, aj) ∀j 6= i

⇓
d2(q

0
, ai) < d2(q

0
, aj) ∀j 6= i

⇓
d(q

0
, ai) < d(q

0
, aj) ∀j 6= i

So, when the noise is Gaussian47, the ML rule amounts to computing the Euclidean
distance (similarity) between the observations vector q and every possible element in the
constellation ai, i = 1, · · · ,M , and deciding the one that is closest (most similar!!). This
yields the...

Choose bi such that
d(q

0
, ai) < d(q

0
, aj) ∀j 6= i.

Proximity rule

2.9.5 The appropriate rule

The take-home message here is: the MAP rule amounts to the ML rule when the symbols
are equally likely, and the latter amounts to a proximity rule when the noise is Gaussian

equally likely
symbols

Gaussian
noise

MAP rule ML rule proximity rule

If the first condition (equally likely symbols) is not met, we cannot go further along
the line.

Consider a binary digital communication system with p(b1) = 0.6 and p(b2) = 0.4
operating in a Gaussian channel. What is the appropriate decision rule? 48

Quick quiz

47We obtained the above expression for fq|A in Section 2.7 assuming Gaussian (thermal) noise.
48

It’stheMAPrulesincethesymbolsnotbeingequallylikelywon’tallowustomoveforwardfromthe
MAPruletotheMLrule.
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2.10 Decision regions

The decision regions are regions defined in the space of the observations vector, q (for us,

q ∈ RN , and hence the decision regions are in RN),

I1, I2, · · · , IM ⊂ RN ,

that allow to decide the symbol transmitted, B̂, directly from vector q without computing

probabilities. Specifically, Ii is the region in the space RN for which we should decide
bi according to the MAP rule. So, the whole point of decision regions is to avoid the
computation of probabilities every time a new observation arrives. We have as many
decision regions as symbols and they are defined so that:

• they are disjoint, Ii ∩ Ij = ∅, i 6= j

• they cover the entire space in which q is defined, ∪iIi = RN (we need to know what
to do for every observations vector q)

• they must respect the MAP rule, i.e., we define Ii such that

q ∈ Ii ⇔ fq|A(q|ai)p(bi) > fq|A(q|aj)p(bj)∀j 6= i︸ ︷︷ ︸
MAP rule

⇔ B̂ = bi

In summary, they are defined so that the optimal decision is bi if q falls within
the region Ii. Then, when you receive some observation, you find out which decision
region it belongs to, and then you decide for the corresponding symbol.

Let us compute the decision regions in a few different situations.

2.10.1 Example: M = 2, N = 1, p(b1) = p(b2), Gaussian noise

−
√
T 0

√
T

I2 I1

fq|A(q
0
| −
√
T )p(b2) fq|A(q

0
|
√
T )p(b1)

q0

The rule is proximity. In order to apply it we can draw a line between the two elements
and, after that, the perpendicular bisector will tell us which points in the space are closer
to one element than to the other.

107



2.10.2 Example: M = 2, N = 1, p(b1) > p(b2), Gaussian noise

−
√
T 0

√
T

qt

I2 I1

fq|A(q
0
| −
√
T )p(b2)

fq|A(q
0
|
√
T )p(b1)

q0

When the probabilities of the symbols are different, the decision threshold is not in
the middle (the rule is not proximity but MAP). Later on, we will see an example of how
to compute the threshold when the symbols are not equally likely (although you already
know the equation to be solved).

2.10.3 Example: M = 2, N = 2, p(b1) = p(b2), Gaussian noise

The rule is proximity. Notice that, when choosing the appropriate rule, the number of
elements in the constellation, M , and the dimension of the latter, N , are irrelevant.

a1

a2

2.10.4 Example: M = 2, N = 2, p(b1) > p(b2), Gaussian noise

The rule is MAP because symbols are not equally likely.
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a1

a2

Since a1 has been more likely transmitted, its decision region is bigger49.

2.10.5 Example: M = 4, N = 2, p(bi) = 1/4, Gaussian noise

The rule is proximity.

a1a2

a3 a4

2.10.6 Example: M = 4, N = 2, p(b1) = p(b2) < p(b3) = p(b4),
Gaussian noise

The rule is MAP because symbols are not equally likely.

49Rigorously speaking, both regions encompass an infinite area. However, the area under the (uncon-
ditional) pdf of the observations is larger for a1’s decision region (meaning we will be deciding a1 more
often).
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a1a2

a3 a4

Since symbols b3 and b4 are more likely than b1 and b2, more often than not we will
decide they were transmitted, and hence their decision regions should be larger.

2.10.7 Example: generic 2D constellation with equally likely
symbols and Gaussian noise

The rule is proximity.

−1 1

2

a1 a2 a3

a4

We focus on computing the decision region for a2: we need to find the points in the
space that are closer to this symbol than to any other symbol. The points in that region
should be

• closer to a2 than to a3, and at the same time

• closer to a2 than to a4, and at the same time

• closer to a2 than to a1.

Hence we need to compute the intersection of three regions, and each one is obtained
using a perpendicular bisector:
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• We join a2 and a3, find the perpendicular bisector, and the points to the left of the
line are closer to a2 than they are to a3.

• We join a2 and a4, find the perpendicular bisector, and the points below the line
are closer to a2 than they are to a4.

• We join a2 and a1, find the perpendicular bisector, and the points to the right of
the line are closer to a2 than to a1.

The intersection of those three regions is closer to a2 than it is to any other symbol:
it comprises its decision region.

What is the correct decision to be made for an observation, q
0
, that exactly falls on the

border of two regions (corresponding to two different elements of the constellation)? 50

Quick quiz

2.11 Computation of the probability of error

Let us see how to compute the probability of error attained by our detector. In order to
do it we are going to use the law of total probability,

Pe = Pe|b1p(b1) + Pe|b2p(b2) + · · ·+ Pe|bMp(bM),

and the conditional probabilities, Pe|bi , i = 1, · · · ,M , that show up here are computed
using the decision regions51. In particular, we know that, if the symbol transmitted was
B = bi:

• @ error if q ∈ Ii (the decision region for the symbol actually transmitted)

• ∃ error if q /∈ Ii

Then,

Pe|bi = Pe|ai = P

q|A = ai︸ ︷︷ ︸
r.v.

/∈ Ii

 ,

and we can compute the probability of q not belonging to the decision region Ii condi-
tional on the fact that the symbol transmitted was ai as long as we know the corresponding
pdf, q|A = ai. That’s always going to be the case and, e.g., for AWGN we have (see 2.7.2)

q|A = ai ∼ N
(
ai,

N0

2
I
N

)
.

50

Alongtheborderthereisatieandbothsymbolswillyieldthesameprobabilityoferror.Hence,wecan
chooseeitherofthetwo.

51Notice that Pe|bi = Pe|ai .
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If we know the pdf, fX(x), of a random variable X we can compute the probability of
the random variable taking values in a given interval of interest, let’s say (a, b)

a b

fX(x)
∫ b
a
fX(x)dx = P (a ≤ X ≤ b)

P (a ≤ X ≤ b) =

∫ b

a

fX(x)dx

Probability from pdf

It’s the same reasoning here, but now the random variable is q|A = ai. Hence, putting
it all together we have

Pe|bi = Pe|ai

an error happens when the observation vector q doesn’t fall within the correct decision
region (that for bi)

= P

q|A = ai︸ ︷︷ ︸
r.v.

/∈ Ii

 =

∫
q /∈Ii

fq|A(q|ai)dq,

and we are simply integrating a Gaussian random variable (now is when the Q function
comes handy). Notice that for computing the above Pe we need the decision regions.
Hence, finding the latter is always the first step for computing the probability of error.

Next, we see how to apply this in different scenarios.

2.11.1 Example: M = 2, N = 1, equally likely symbols, Gaussian
noise

This is an important case because it’s very common.

φ1(t)
−
√
T

a2

√
T

a1

Let us assume that the PSD of thermal noise (i.e., the variance of the noise) is N0

2
.

The steps we follow are always the same:
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Compute the decision regions. In principle we must apply the MAP rule, which
states that we should decide b1 if

fq|A(qt | A =
√
T )p(b1) > fq|A(qt | A = −

√
T )p(b2),

and b2 otherwise. If we make a plot, we get something like this

−
√
T 0

√
T

I2 I1

fq|A(q
0
| −
√
T )p(b2) fq|A(q

0
|
√
T )p(b1)

q0

and now our goal is to find the threshold, say qt, at which both curves intersect. It
can be obtained by solving

fq|A(qt | A =
√
T )p(b1) = fq|A(qt | A = −

√
T )p(b2).

However, since the symbols are equally likely and the noise is Gaussian, we set the
decision regions using the proximity rule: we decide b1 for the values of q (scalar)
that are closer to a1 than a2. Hence, the decision threshold is qt = 0, the middle
point between the two elements.

If the symbols were not equally likely, we should apply the MAP rule and solve the
above equation.

The probability of error is written in terms of the probability of error conditional on
each symbol: we just apply the law of total probability

Pe = Pe|
√
Tp(b1) + Pe|−

√
Tp(b2) = Pe|

√
T

1

2
+ Pe|−

√
T

1

2
,

where we have used that the symbols are equally likely, and hence their probability
is 1

2
.

Compute each conditional probability of error on its own.

• The conditional error probability when
√
T was transmitted is given by

Pe|
√
T = p

(
q | A =

√
T /∈ [0,∞)

)
= p

(
q | A =

√
T ∈ (−∞, 0)

)
=

∫ 0

−∞
fq|A(q |

√
T )dq

113



in plotting this pdf we observe that we are integrating the tail of a Gaussian
random variable with know mean and variance: we can use the Q function!

0
√
T

I1I2

= Q

( √
T√

N0/2

)
Notice that the numerator in the Q function is the distance between the

mean and the threshold of integration, whereas the denominator is simply the
standard deviation.

• We need to do the same thing for the probability of error when −
√
T was

transmitted. Again, there is an error when the observation, q here, falls outside
the decision region for the transmitted symbol, and hence,

Pe|−
√
T = p

(
q | A = −

√
T /∈ (−∞, 0)

)
if it doesn’t belong to the negative part of the axis, then it must belong to the
positive part

= p
(
q | A = −

√
T ∈ [0,∞)

)
=

∫ ∞
0

fq|A(q | −
√
T )︸ ︷︷ ︸

pdf of q when

A=−
√
T

dq

−
√
T 0

I1I2

= Q

( √
T√

N0/2

)

114



The area in both tails is the same. We could have argued that both error probabil-
ities are equal due to the symmetry of the problem: the Gaussian pdf is symmetric
and in the first case we computed the area of a tail that is

√
T away to the left of

the mean, whereas now we are computing the area of a tail that is
√
T away to the

right of the mean.

Usually, you don’t make a picture for the pdf of the observations conditional on
every symbol, but “recycle” the one you used for establishing the decision regions.

Pictures for computing Pe

The final overall probability of error is

Pe =
1

2
Pe|
√
T +

1

2
Pe|−

√
T =

1

2

(
Pe|
√
T + Pe|−

√
T

)
=

1

2
2× Pe|√T = Pe|

√
T = Q

( √
T√

N0/2

)
For this constellation, we have already computed the energy and the distance between

the elements in the constellation52

Es =
1

2
T +

1

2
T = T

d(a1, a2) = 2
√
T

and we have

Es = T ⇒
√
Es =

√
T (2.1)

d(a1, a2) = 2
√
T ⇒

√
T =

d(a1, a2)

2
. (2.2)

Using this, we can rewrite the expression for the probability of error,

Pe = Q

( √
T√

N0/2

)
using equation (2.2) as

= Q

(
d(a1, a2)

2
√
N0/2

)
← the most widely used

and using equation (2.1) as

= Q

(√
Es
N0

2

)
. (2.3)

Using equation (2.2) we get an expression as a function of the distance between the
elements in the constellation, whereas using equation (2.1) we get an expression as a
function of the mean energy. The former is the more widely used.

Notice that
52This was the constellation of two different sets in Section 2.5.2 (we were choosing the best set of

signals for transmission accounting for the energy and distance between signals).
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• ↑ Es ⇒↓ Pe

• ↑ SNR
(

= Es
N0
2

)
⇒↓ Pe (Es is the power of the signal of interest53 and N0

2
is the

power of the noise)

These are expressions for the probability of error in any constellation as long as

• it’s binary,

• the two symbols are equally likely, and

• the noise is Gaussian.

If these conditions are met, we can use any of these expressions regardless of the di-
mension, N , of the constellationa.

aEquation (2.3) further assumes the constellation is centered (which should always be the case).
Otherwise you don’t have two elements with the exact same energy, and equal to Es. Another take
on this: when you shift/rotate the constellation the performance, i.e., the probability of error, doesn’t
change, but the mean energy does; hence, Es is not really tied to the probability of error, and Equation
(2.3) is only meant to be used when the constellation is centered (the usual scenario).

Validity of these formulas

Where does thermal noise (the model we discussed in 1.8) fit in the above equations?
54

Quick quiz

2.11.2 Example: M = 3, N = 1, equally likely symbols, Gaussian
noise

We have a 1D constellation with M = 3 symbols: −1, 0, and 1. Assuming equally likely
symbols and Gaussian noise with variance N0

2
= 1, what is the probability of error?

We follow the same steps as before:

We compute the decision regions. Since the symbols are equally likely and the noise
Gaussian, the rule is proximity. If these conditions didn’t hold we should apply
MAP or ML. In any case, it is useful to do a plot

53The power is the average of the energy.
54 Theterm

N0

2isthepowerofthermalnoise.
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−1 0 1−0.5 0.5

I−1 I0 I1

We write the probabiliy of error in terms of the conditional probabilities of error.

Pe = Pe|−1p(−1) + Pe|0p(0) + Pe|+1p(+1)

eq. likely
symbols

=
1

3

(
Pe|−1 + Pe|0 + Pe|+1

)
We compute the conditional error probabilities.

Pe|−1 = p (q | A = −1 /∈ I−1) = p (q | A = −1 ∈ [0.5,∞))

= Q

(
|threshold−mean|
standard deviation

)
= Q

(
|−0.5− (−1)|

1

)
= Q (0.5)

Pe|0 = Q

(
|0− (−0.5)|

1

)
+ Q

(
|0.5− 0|

1

)
= 2Q (0.5)

Pe|1 = Q

(
|1− 0.5|

1

)
= Q (0.5)

Hence, the overall error probability is

Pe =
1

3

(
Pe|−1 + Pe|0 + Pe|+1

)
=

1

3
(Q (0.5) + 2Q (0.5) + Q (0.5)) =

4

3
Q (0.5) .

2.11.3 Example: M = 2, N = 1, NOT equally likely symbols,
Gaussian noise

φ1(t)
−
√
Es

a2

√
Es
a1

with

p(b1) = p(
√
Es) = 1− p

p(b2) = p(−
√
Es) = p

and p > 0.5 (the probability of b2 is strictly larger than that of b1). Assume the PSD of
the noise is still N0

2
.

117



We compute the decision regions. Since the symbols are not equally likely we can-
not apply the ML rule nor the proximity rule (it wouldn’t be optimal), and we
need to apply the MAP rule.

−
√
Es 0

√
Es

qt

I2 I1

fq|A(q
0
| −
√
Es)p(b2)

fq|A(q
0
|
√
Es)p(b1)

q0

Therefore, it’s not so clear anymore what are the decisions regions: we need to math-
ematically compute the decision threshold, qt, the point at which both functions
(they are not simply likelihoods) intersect/cross. For that purpose, we recall the
mathematical expression we obtained in Equation (2.6) for the likelihood (notice
that here the constellation is 1D, and hence N = 1).
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fq|A

(
qt | −

√
Es

)
p = fq|A

(
qt |
√
Es

)
(1− p)

⇓

�
�
�
��1

(πN0)
1
2

e
− (qt+

√
Es)

2

N0 p =
�
�
�
��1

(πN0)
1
2

e
− (qt−

√
Es)

2

N0 (1− p)

⇓
p

1− p
= e

−(qt−
√
Es)

2+(qt+
√
Es)

2

N0

⇓

log
p

1− p
=
−(qt −

√
Es)

2 + (qt +
√
Es)

2

N0

⇓

N0 log
p

1− p
= −(��q

2
t +��Es − 2qt

√
Es) +��q

2
t +��Es + 2qt

√
Es

⇓

N0 log
p

1− p
= 4qt

√
Es

⇓

qt =
N0

4
√
Es

log
p

1− p

We can add the threshold to the plot.

We write the probabiliy of error in terms of the conditional probabilities of error,

Pe = Pe|−
√
Esp+ Pe|

√
Es(1− p).

We compute the conditional error probabilities in the usual way:

• Pe|−
√
Es = Q

(
qt+
√
Es√

N0
2

)
• Pe|+

√
Es = Q

(√
Es−qt√
N0
2

)
Hence,

Pe = Q

qt +
√
Es√

N0

2

 p+ Q

√Es − qt√
N0

2

 (1− p).

Notice that the decision rule is only important to find the decision regions.
Where the decision rule matters
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What matters when computing the probability of error is (prior probabilities aside) the
distribution of the observations given each element in the constellation, i.e., fq|A(·|ai),
i = 1, · · · ,M . This implies that the important thing is not the original constellation we
have at the transmitter, but the one we observe at the other end of the channel. Hence,
for computing Pe|ai , we are not concerned with the value of ai (at the transmitter), but
with the distribution of the observations (at the receiver) when ai is transmitted. What
happens is that in this course, most of the time, the latter distribution is centered at ai
(but it could be centered somewhere else).

The constellation at the receiver

2.12 Computation of the probability of error when

N > 1

So far we have seen examples of computing the probability of error in one-dimensional
constellations (N = 1). Let us now see a couple of characteristic examples when N = 2.

2.12.1 Example: M = 2, N = 2, equally likely symbols, Gaussian
noise with Sn(jω) = N0

2

q1

q2

a2 √
Es

a1

√
Es

I2

I1

fq|A

(
q

∣∣∣∣ [ 0√
Es

])
p(b2)

fq|A

(
q

∣∣∣∣ [√Es0

])
p(b1)

a “heap”

This is one of the constellations for which we computed the mean energy and distance
in Section 2.5.2: the corresponding signals were a sine and a cosine (they are orthogonal).

We follow the usual steps:

We compute the decision regions. The optimal decision rule is proximity because
the symbols are equally likely and the noise is Gaussian. Hence, in order to get the
decision regions we just draw the perpendicular bisector of the line that joins both
symbols: the points to the left of this line are closer to a2 than to they are to a1,
and vice versa. In any case we can plot likelihood × prior for every symbol to see
what’s going on. They are two-dimensional Gaussians, and we are watching them
from above in the companion (left-hand-side) picture above.
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The probability of error is written in terms of the conditional probabilities of error.

Pe = Pe|b1p(b1) + Pe|b2p(b2)

We compute the conditional error probabilities. First, we compute Pe|b1 , which is
the probability of the observations vector q falling within the region when A =[√
Es, 0

]
was transmitted. We have

q|A =
[√

Es, 0
]
∼ N

([√
Es
0

]
,
N0

2
I

2

)
,

and, in order to compute the probability of error conditional on A =
[√
Es, 0

]
we

need to integrate the corresponding 2D pdf in the incorrect decision region, i.e.,
we need to compute the double integral

Pe|a1 =

∫
q∈I2

fq|A
(
q | a1

)
dq =

∫ ∞
−∞

∫ ∞
q1

fq1,q2|A11,A12 (q1, q2 | a11, a12) dq2dq1,

This is complicated and the easy way to solve this problem is by rotating the axes
(which amounts to a change of variable). If we do so, we get55

q′1

q′2

a′2
a′1

I2 I1

Notice that rotating/shifting the 2D Gaussians only affects their mean: ultimately,
we are simply applying a known linear function to both of them.

With respect to the new axes, the integral becomes

Pe|a′1 =

∫ 0

−∞

∫ ∞
−∞

fq′1,q′2|A1,A2
(q′1, q

′
2 | a′11, a

′
12) dq′2dq

′
1,

and this is a double integral we can handle56. However, we don’t have to: the
decision threshold is now a vertical line, and hence to decide the region to which

55Notice that the axes are now q′1 and q′2.
56We have uncoupled the integrals (the bounds are now fixed), and hence we can compute one after

the other. The inner one amounts to marginalization (i.e., the law of total probability), and hence∫ 0

−∞

∫ ∞
−∞

fq′1,q′2|A1,A2
(q′1, q

′
2 | a′11, a′12) dq′2dq

′
1 =

∫ 0

−∞
fq′1|A1

(q′1 | a′11) dq′1.

The result of the remaining (outer) integral can be obtained (as usual) by means of the Q function.
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an observation q
0

belongs, we only need to check the horizontal component. We
know the (marginal) distribution, and hence the pdf, of any individual component
in a random Gaussian vector. Indeed, given the joint pdf of q conditional on the
element of the constellation transmitted,

q′|A = a′i ∼ N
([
a′i1
a′i2

]
,

[
N0

2
0

0 N0

2

])
,

we know both marginals

q′1|A = a′i ∼ N
(
a′i1,

N0

2

)
q′2|A = a′i ∼ N

(
a′i2,

N0

2

)
,

i.e., every one of them is also Gaussian with mean and variance given by the corre-
sponding elements in, respectively, the means vector and the covariance matrix57.
The figure below extends the previous one by plotting the pdfs for the horizontal
components of both 2D Gaussians.

q′1

q′2

a′2
a′1

I2 I1

The probability of error given a1 can then be computed as

Pe|a′1 =

∫ 0

−∞
fq′1|A1

(q′1 | a′11) dq′1

with q′1 | a′11 ∼ N (a′11, N0/2) (again, shifting the Gaussians only affects their means:
a1 → a′1 and a2 → a′2), so that we are integrating a 1D Gaussian random variable
whose pdf is known, and we can resort to the Q function

= Q

√2Es

2
√

N0

2

 .

57This is similar to what happens in a Gaussian process: you pick any time instants you like (a single
one maybe) and the joint distribution of the corresponding random variables is still Gaussian.
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Notice that both vectors, a1 and a2, after rotation, still have length
√
Es. Then,

Pythagoras theorem can be used in the above figure to compute the distance be-
tween them.

Due to the symmetry of the problem, we also have

Pe|a′2 = Q

√2Es

2
√

N0

2

 ,

and hence the final result is

Pe = Q

√2Es

2
√

N0

2


or, equivalently

= Q

d(a′1, a
′
2)

2
√

N0

2

 = Q

d(a1, a2)

2
√

N0

2

 ,

which is the result we got before for binary constellations with equally likely symbols
and Gaussian noise.

From the beginning, we could have said: “well, this is a binary constellation, and
we already know the probability of error in a binary constellation when the symbols are
equally likely and the noise is Gaussian”. However, this trick is useful in other situations!!

2.12.2 Example: 4-QAM, equally likely symbols, Gaussian noise

a1a2

a3 a4

=

[
K
K

]

=

[
K
−K

]
p(a1) = p(a2) = p(a3) = p(a4) =

1

4

PSD of the noise is Sn(jω) = N0

2

The usual steps:

W obtain the decision regions and, assuming Gaussian noise and equally likely sym-
bols, the rule is proximity. This was one of the examples we used in 2.10.5 to
illustrate the decision regions: the decision regions are the quadrants.
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q1

q2

a1a2

a3 a4

I1I2

I3 I4

The (overall) probability of error is expressed in terms of the conditional error prob-
abilities,

Pe = Pe|a1p(a1) + Pe|a2p(a2) + Pe|a3p(a3) + Pe|a4p(a4).

We compute the conditional probabilities as

Pe|a1 = p(q | A = a1 /∈ I1)︸ ︷︷ ︸
hard to compute

= 1− p(q | A = a1 ∈ I1)︸ ︷︷ ︸
it can be
computed

How do we compute p(q | A = a1 ∈ I1)? We know that

q|A = a1 ∼ N
(
a1,

N0

2
I

2

)
= N

([
ai1
ai2

]
,

[
N0

2
0

0 N0

2

])
,

which entails that the distributions for the individual components (the marginal
distributions) are:

q1|A = a1 ∼ N
(
a11,

N0

2

)
a11=K

= N
(
K,

N0

2

)
q2|A = a1 ∼ N

(
a12,

N0

2

)
a12=K

= N
(
K,

N0

2

)
.

Moreover, these two random variables are independent (the covariance matrix is
diagonal)!58 Hence, we can say

p(q ∈ I1) = p(q1 > 0, q2 > 0) = p(q1 > 0)p(q2 > 0),

and, for the first factor, we need to compute the probability of a Gaussian random
variable with mean K and variance N0/2 taking on values greater than 0. We know
how to do this using the Q function. Notice that, once again, we end up working
with one-dimensional Gaussians.

58In order to make the notation less cumbersome, from now on we are omitting the conditioning, |a1.
It is understood (we focus on the probability of error conditional on a1).
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0 K

Q

(
K√
N0/2

)
1 - Q

(
K√
N0/2

)

q1

Hence,

p(q1 > 0) = 1−Q

(
K√
N0/2

)
...and we do the same for q2 to get

p(q2 > 0) = p(q1 > 0) = 1−Q

(
K√
N0/2

)
.

Therefore,

p(q ∈ I1) = p(q1 > 0)p(q2 > 0) =

(
1−Q

(
K√
N0/2

))2

,

and

Pe|a1 = 1−

(
1−Q

(
K√
N0/2

))2

.

We could do the same for the remaining symbols but, due to the symmetry of the
problem, we are going to get the same result and, therefore,

Pe = Pe|a1 = Pe|a2 = Pe|a3 = Pe|a4 = 1−

(
1−Q

(
K√
N0/2

))2

.

What is the probability of error for the constellation below when R = K
√

2?

a1

a2

a3

a4

R

Quick quiz
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59

2.13 Bounds on the probability of error

In constellations with more than one dimension it is usually very difficult to compute the
exact60 probability of error (only in a few cases, like the ones we have just studied, this is
feasible). In more complicated constellations, we resort to bounds: we compute an upper
bound for the probability of error rather than the exact value (instead of saying, e.g.,
Pe = 2.3 · 10−6, we are going to say Pe ≤ 10−5).

2.13.1 The union bound

The first one is the union bound, which says that

Pe ≤
M∑
i=1

p(bi)
M∑
j=1
j 6=i

Q

(
d(ai, aj)

2σn

)

where σn is the standard deviation of the noise (for us, it will be
√
N0/2 most of the

time).

2.13.2 The looser bound

Many Q(·) terms in the union bound will be very small (those in which the distance is
large61), and hence their contribution to the probability of error negligible. The looser
bound is a simplification of the union bound that assumes that only errors between
adjacent symbols are possible, that is,

a1a2

a3 a4

possible

possible

no
t
ve

ry
lik

el
y

Here, when we transmit a1 we might decide a2 or a4 because they are the adjacent
symbols, but we will hardly decide a3. In other words, most of the time we will only
confuse a symbol with those that are the closest to it (there can be more than one). This
means assuming a whole lot of errors are not possible.

For the looser bound we need a parameter which is...

59 Itisthesameasbeforesincethisconstellationsisthepreviousonerotated45◦.

60Notice that, so far, we have been computing exact error probabilities.
61Remember that Q function is a (rapidly) decreasing function.
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• dmin = mini,j=1,··· ,M
j 6=i

{
d(ai, aj)

}
, that is, the minimum distance between any two

elements in the constellation. So, in order to obtain this, we need to compute the
(Euclidean) distance between any two elements in the constellation and, afterwards,
choose the minimum.

Once we know dmin, and assuming equally likely symbols, the looser bound is given by

Pe ≤ (M − 1)Q

(
dmin
2σn

)

The looser bound is much less accurate than the union bound.

Union bound vs. Looser bound

2.14 kiss number-based approximation for the prob-

ability of error

If symbols are equally likely, the most common approximation (not a bound!!) of the
probability of error is given by

Pe ≈ κQ

(
dmin
2σn

)
where

• σn is the standard deviation of the noise, and

• κ is the kiss number, which is defined as

κ =
M

max
i=1
{# elements that are at distance dmin from ai} .

Notice that we are computing the maximum of a set. In words, kappa is the
maximum number of symbols that are at distance dmin from any given symbol. It’s
better seen through an example

2.14.1 Example: computing κ in a constellation with 4 elements

For every element in the constellation we find out how many are at distance dmin from
it. For instance, if

• a1 → has 3 elements that are at dmin from it,

• a2 → has 1 element that is at dmin from it,

• a3 → has 2 elements that are at dmin from it, and

• a4 → has 2 elements that are at dmin from it

then the kiss number is the maximum of 3, 1, 2, and 2, i.e., κ = 3.
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2.14.2 Example: computing the kiss number in a 4-QAM

a1a2

a3 a4

dmin

dmin

• a1 → has 2 elements that are at dmin from it

• a2 → has 2 elements that are at dmin from it

• a3 → has 2 elements that are at dmin from it

• a4 → has 2 elements that are at dmin from it

Hence, κ = max ({2, 2, 2, 2}) = 2.

This approximation and the previous bounds are only valid when the noise is Gaus-
siana. Additionally, the looser bound and the kiss number -based approximation also
assume equally likely symbols, though they could be generalized for elements with dif-
ferent probabilities.

aQ () is for integrating Gaussian pdfs!!

Validity of this approximation and the previous bounds

2.15 Connection between bits and symbols

If M is the number of elements in our constellation:

• The number of bits per symbol is

m = log2M

• The (average) bit energy is defined as

Eb =
Es
m

• We can also talk about bit error rate or BER, which is the probability of having an
erroneous bit, and can be bounded

Pe
m
≤ BER ≤ Pe
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2.15.1 Gray mapping

When assigning sequences of bits to elements in the constellation, it is a good thing to
assign sequences of bits that only differ in one bit to adjacent elements in the constellation.
That way, a symbol error will give rise to a single bit error. Keep in mind that we are
assuming that errors between adjacent elements in the constellation are far more likely
that those between elements far away.

0010

11 01

Example: M = 4, N = 2

There is a systematic way to build the list of sequences for a given number of bits per
symbol, m, giving the list for m − 1. That along with the fact that Gray mapping for
m = 1 is straightforward allows to build the list of sequences for any value of m:

0

1

m = 1 0 0

1 0

1 1

0 1

reversed

m = 2

0 0 0

1 0 0

1 1 0

0 1 0

0 1 1

1 1 1

1 0 1

0 0 1

reversed

m = 3

2.16 Transmission of a sequence of symbols

4T

T 2T 3T
s2(t)

s1(t) s1(t)

s2(t)
t
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When transmitting a sequence of symbols, we can talk about symbol rate, which is
the number of symbols (from the constellation) transmitted per second. It is the inverse
of the symbol period, which is the time taken to transmit a single symbol (the duration
of the signals in our modulator),

Rs =
1

T

symbols

second
.

The units, symbols
second

, are sometimes referred to as bauds.
Likewise we can define a bit rate, which is the number of bits transmitted per second

(think your internet connection!!). It is connected with the symbol rate through

Rb = m ·Rs.
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Chapter 3

Fundamental limits in
communications

3.1 Information

We need two things to measure the performance of a system using information:

• a (probabilistic) channel model, and

• a quantitative measure of information.

We have seen the first one, and now we focus on the second one: how do we measure
information? Notice that we would like a quantitative measure, that is, a number!!

Intuitively, an unusual event, when it happens, bears a lot of information, whereas
an event that occurs very often does not (we expect it to happen).

The event “it’s now raining in the Sahara desert” bears a lot of information: it doesn’t
happen very often (it is highly unlikely). However, the event “it’s now raining in the
north of Spain” does not provide that much information. That is very common (highly
likely!!).

Example: to rain or not to rain

Foretelling the number is very different than foretelling the color... If I tell you what
number is gonna come up next, I’m giving you a lot of information (you have a lot of
uncertainty about that). On the other hand, if I tell which color is gonna come next,
that’s much less information (odds are 50-50).

Example: Playing roulette

So, the more likely an event is, the less information it bears (you were expecting it to
happen), i.e.,

↑ probability⇒ ↓ information,

and, conversely, the more unlikely (surprising) an event is, the larger the amount of
information it provides, i.e.,

↓ probability⇒ ↑ information.
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We want a metric for information that is consistent with this, i.e., a metric that will
associate a large amount of information to low-probability events, and a small quantity
of information to high-probability events.

Definition 3.1.1: Information

Given a random experiment characterized by a discrete random variable X, such
that,

X ∈ {x1, x2, · · · , xM}

with known p(xi), i = 1 · · · ,M , the information associated with xi (or autoinfor-
mation of xi) is

Ixi = log2

1

p(xi)
= log2 1− log2 p(xi) = − log2 p(xi) bits.

Notice the information, Ixi , is a number.

Where does the above formula come from?

Why 1
p(xi)

? We want the information to decrease as the probability increases.

Why logarithm? Because if two events are independent, then the information they
provide jointly should be the sum of information provided by each one of them.

Let x and y denote two independent events (for example, different tosses of a coin,
or realizations of independent random variables). The information provided by the
joint event (x, y) is

Ixy = log2

1

p(x, y)

indep.
= log2

1

p(x)p(y)
= log2

1

p(x)
+ log2

1

p(y)
= Ix + Iy

Why is 2 the base of the logarithm? It doesn’t have to. Sometimes, natural loga-
rithm is used and, in such case, the units are nats.

Ixi = log2

1

p(xi)
bits

Ixi = log
1

p(xi)
nats

X is a r.v. whose sample space is given by Ω = {A,B,C,D}, i.e.

X ∈ {A,B,C,D} .

The information of every possible value of the r.v. is computed as

IA = log2
1

p(A)
, IB = log2

1
p(B)

IC = log2
1

p(C)
, ID = log2

1
p(D)

.

Example: computing autoinformation
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If all the values are equally likely, i.e., p(A) = p(B) = p(C) = p(D),

IA = IB = IC = ID = log2 4 = 2 bits.

We are now in position to compute the information associated with any event, but we
also care about the amount of information in a random variable or, equivalently, a source
of information1.

What do you need to compute the information provided by a certain event happening?
2

Quick quiz

3.2 Entropy

In order to measure the information in a random variable, we would like to account for
all the possible values it can take. Hence, it seems reasonable to define the information
in a random variable as the expectation of the information over all the possible values it
can take. This quantity for a random variable X is known as the entropy of X and it’s
denoted as H(X).

Definition 3.2.1: Entropy

Let X be a random variable such that

X ∈ {x1, x2, · · · , xM} ,

then the entropy of X is defined as

H(X) =
M∑
i=1

p(xi)︸ ︷︷ ︸
prob.

log2

1

p(xi)︸ ︷︷ ︸
info.

=
M∑
i=1

−p(xi) log2 p(xi) = −
M∑
i=1

p(xi) log2 p(xi)
bits

symbol

Notice that

• the units are bits per symbol3,

• the entropy is a number, not a random variable,

• using L’Hopital it can be shown that

0 log2 0 = 0.

1Even though a source of information is a sequence of random variables, for us they all have the same
distribution, and hence any one of them is enough to characterize the source.

2 You“only”needtheprobabilityofthatevent.

3This is an average: you multiply the autoinformation of a value by its probability and you sum over
all the possible values.

133



Consider a r.v. X ∈ {0, 1, 2, 3} with

p(X = 0) = 1/2, p(X = 2) = 1/4
p(X = 1) = 1/4, p(X = 3) = 0

.

The entropy is given by

H(X) = −
M∑
i=1

p(xi) log2 p(xi)
M=4
= −

(
1/2 log2 1/2 + 1/4 log2 1/4 + 1/4 log2 1/4 +���

��:0
0 log2 0

)
= − (1/2(−1) + 1/4(−2) + 1/4(−2)) = 1/2 + 1/2 + 1/2 = 3/2

bits

symbol

Example: computing the entropy

Consider a r.v. X ∈ {a, b, c, d} with

p(X = a) = 1/4, p(X = c) = 1/2
p(X = b) = 1/4, p(X = d) = 0

.

The entropy is given by

H(X) = −
(

1/4 log2 1/4 + 1/4 log2 1/4 + 1/2 log2 1/2 +���
��:0

0 log2 0
)

= 3/2
bits

symbol

The values the random variable takes on make no difference in the computation of
the entropy (only their probabilities!!). So, two different random variables with the
same distribution have the same entropy.

A related example: different sampling space, same probabili-
ties

3.2.1 Interpretation of the entropy

There are two possible interpretations for the entropy. When talking about random
variables, the entropy may be interpreted as the uncertainty about the value that the
random variable is going to take. On the other hand, when we interpret X as a source
of information, the entropy is the information the source produces on average:

uncertainty about the
value the r.v will take

Entropy of X

information produced by
the source on average

X as r.v.

X as source
of information
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Notice that we interpret the entropy as either information or uncertainty. Interpretation
often comes handy when we need to compute the entropy of a certain variable.

Let us consider a source of information (modeled as a random variable), X, taking
values in the set {x1, x2, · · · , xM}, and we have p(x2) = 1, and p(xi) = 0,∀i 6= 2, then

H(X) = − (0 log2 0 + 1 log2 1 + 0 log2 0 + · · ·+ 0 log2 0) = 0
bits

symbol
.

This means the source does not produce any information...or if we think of X as a
r.v., there is no uncertainty.

Example: entropy of an uncertainty-less source

What is the entropy of a constant (say, e.g., 5)? 4

Quick quiz

3.2.2 Properties of the entropy

If X ∈ {x1, x2, · · · , xM} is a discrete random variable5, we have

• H(X) ≥ 0 since

0 ≤ p(xi) ≤ 1

⇓
1

p(xi)
≥ 1⇔ log2

1

p(xi)
≥ 0

where it must be taken into account that log2 is a monotonically increasing function,
and hence computing the inverse on both sides of the inequality doesn’t change the
direction thereof.

• H(X) ≤ log2M and, moreover,

H(X) = log2M ⇔ p(xi) =
1

M
,

the entropy is maximum when the symbols are equally likely.

4

Youcanthinkofaconstantasarandomvariabletakingacertainvaluewithprobability1andanyother
valuewithprobability0.Thisisexactlytheaboveexample.Hence,theentropyiszero.

5For the time being we are focusing on discrete random variables.
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3.3 Binary entropy function

Let us consider the entropy of a binary random variable which can only take two values:
a and b,

X ∈ {a, b}
with probabilities

p(X = a) = p

p(X = b) = 1− p.

The entropy is given by

H(X) = −p(X = a) log2 p(X = a)− p(X = b) log2 p(X = b)

= −p log2 p− (1− p) log2(1− p).

H(X) is a function of just one variable, p, and we can easily plot it

1
2

1

1

0

maximum uncertainty when
p(a) = p(b)

no uncertainty: we know for
sure the value of the r.v.

p

H(X)

Since the values of the random variable don’t matter (only the probabilities), this is
valid for any binary random variable. The entropy of a binary r.v. shows up often when
computing the entropies of other (non-binary) random variables. That’s why we have a
notation for it

Definition 3.3.1: Binary entropy function

Hb(p) = −p log2 p− (1− p) log2(1− p).

Hence, whenever we have the entropy of a binary random variable, we will resort to
this notation. Notice that the argument of Hb is not the random variable, but rather the
probability of one of the two symbols (any of them).
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An important property of the binary entropy function is that

Hb(p) = Hb(1− p),

i.e., the function is symmetric around 1/2.

Binary entropy function is symmetric around 1/2

Also, from the above plot, we can see that

max {Hb(p)} = 1

for p = 1/2. This is just a particular case of the last property in Section 3.2.2.

3.4 Joint entropy

The definition of entropy can be extended to more than one variable. Let us consider
random variables X and Y such that

X ∈ {x1, x2, · · · , xM} ,with known p(xi), i = 1, · · · ,M
Y ∈ {y1, y2, · · · , yL} ,with known p(yj), j = 1, · · · , L

i.e., they have different alphabets and probabilities. We define the joint entropy of X
and Y as

Definition 3.4.1: Joint entropy

H(X, Y ) =
M∑
i=1

L∑
j=1

p(xi, yj) log2

1

p(xi, yj)
= −

M∑
i=1

L∑
j=1

p(xi, yj) log2 p(xi, yj)
bits

symbol
.

We are simply averaging the information of all the joint events. It measures the
information associated with the random experiment characterized by those two random
variables.

If variables X and Y are independent, then we have

p(xi, yj) = p(xi)p(yj),
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and

H(X, Y ) =
M∑
i=1

L∑
j=1

p(xi, yj) log2

1

p(xi, yj)
=

M∑
i=1

L∑
j=1

p(xi)p(yj) log2

1

p(xi)p(yj)

=
M∑
i=1

L∑
j=1

p(xi)p(yj)

(
log2

1

p(xi)
+ log2

1

p(yj)

)

=
M∑
i=1

L∑
j=1

(
p(xi)p(yj) log2

1

p(xi)
+ p(xi)p(yj) log2

1

p(yj)

)

=
M∑
i=1

L∑
j=1

p(xi)p(yj) log2

1

p(xi)
+

M∑
i=1

L∑
j=1

p(xi)p(yj) log2

1

p(yj)

=
M∑
i=1

p(xi) log2

1

p(xi)
�
�
�
�
��

1
L∑
j=1

p(yj) +

�
�
�
�
��

1
M∑
i=1

p(xi)
L∑
j=1

p(yj) log2

1

p(yj)

=
M∑
i=1

p(xi) log2

1

p(xi)︸ ︷︷ ︸
H(X)

+
L∑
j=1

p(yj) log2

1

p(yj)︸ ︷︷ ︸
H(Y )

= H(X) +H(Y )

Furthermore, we know the above final result is the maximum value H(X, Y ) can take,
i.e., the joint entropy of two random variables satisfies

H(X, Y ) ≤ H(X) +H(Y ),

because if the variables are not independent, then they are related and there is some
common information both provide6. Intuitively, there is some intersection between the
information provided by one variable and that provided by the other, and hence you don’t
expect their joint entropy to be the sum. This is related to the concept of conditional
entropy.

How much information do you get by tossing a fair coin twice? 7

Quick quiz

3.5 Conditional entropy

We consider the same setup as before, i.e.,

X ∈ {x1, x2, · · · , xM} ,with known p(xi), i = 1, · · · ,M
Y ∈ {y1, y2, · · · , yL} ,with known p(yj), j = 1, · · · , L.

6As an example, if you know the height of a person, you can approximately estimate its weight. Then
the information provided by both variables shouldn’t be the sum of the individual informations.

7

Sincethecoinisfair,youhaveauniformdistribution,meaningtheentropy/informationyougetina
tossislog22=1bit.Now,sinceeverytossisindependent,theinformationintwotossesisthesumof
theinformationintheindividualtosses,i.e.,two.
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Definition 3.5.1: Conditional entropy

Let X and Y be two random variable characterizing a random experiment. The
conditional entropy of X given Y is defined as

H(X|Y ) =
L∑
j=1

p(yj)H(X|Y = yj)

=
L∑
j=1

p(yj)
M∑
i=1

p(X = xi|Y = yj) log2

1

p(X = xi|Y = yj)

=
L∑
j=1

M∑
i=1

p(xi, yj) log2

1

p(X = xi|Y = yj)

bits

symbol
.

Notice that X|Y = yj is just a regular random variablea, and hence we can compute
its entropy in the usual way: the weighted average of the information over all the
possible values it can take.

a...otherwise, we would be defining the conditional entropy using the conditional entropy!!

In other words, the conditional entropy is the expected entropy of a random variable
(X above) conditional on the value of another random variable (Y above)8.

Again, we have two interpretations

uncertainty still left about
X once we know Y

H(X|Y )

the additional infor-
mation provided by
X once we know Y

X, Y as r.v.’s

X, Y as sources
of information

It will be very useful. For example, if X and Y are independent, then

H(X|Y ) = H(X),

and this can be inferred using the above two interpretations:

• The uncertainty of X after knowing Y is the same we had before (the uncertainty
we have about X is given by H(X)). Since the variables are independent we have
not removed any uncertainty.

• If we know Y , what additional information does X provide? The same it provided
before knowing Y , which is H(X).

8The expectation is computed with respect to the latter.

139



The joint and conditional entropy are related9

H(X, Y ) =
M∑
i=1

L∑
j=1

p(xi, yj) log2

1

p(xi, yj)
=

M∑
i=1

L∑
j=1

p(xi, yj) log2

1

p(yj|xi)p(xi)

=
M∑
i=1

L∑
j=1

p(xi, yj)

(
log2

1

p(yj|xi)
+ log2

1

p(xi)

)

=
M∑
i=1

L∑
j=1

p(xi, yj) log2

1

p(yj|xi)︸ ︷︷ ︸
H(Y |X)

+
M∑
i=1

L∑
j=1

p(xi, yj) log2

1

p(xi)

= H(Y |X) +
M∑
i=1

log2

1

p(xi)

L∑
j=1

p(xi, yj)︸ ︷︷ ︸
p(xi)

= H(Y |X) +
M∑
i=1

log2

1

p(xi)
p(xi)︸ ︷︷ ︸

H(X)

= H(Y |X) +H(X)

Likewise we can show that

H(X, Y ) = H(X|Y ) +H(Y ).

In summary, we have

H(X, Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X) (3.1)

Joint entropy and conditional entropy

A nice way of looking at this connection is using Venn diagrams. We represent every
entropy as a set, and the joint entropy as the union. Let us consider two different
scenarios: either X and Y are dependent, or they are independent.

9We are not making any assumption here, and hence this equality always holds.
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X and Y dependent

H(X|Y ) H(Y |X)

H(X, Y )

H(X) H(Y )

X and Y independent

H(X) = H(X|Y ) H(Y ) = H(Y |X)

We must interpret H(X, Y ) as the union of the entropies of X and Y (despite the fact
that in statistics p(A,B) refers to the intersection of the probabilities of A and B.)

Joint entropy is the union of the sets

From Equation (3.1) relating conditional and joint entropy, we can infer what are the
pieces to the left and right of the intersection:

if we remove H(Y ) from the union...

H(X, Y ) = H(X|Y ) +H(Y )⇒H(X, Y )−H(Y ) = H(X|Y )

and, if we remove H(X) from the union...

H(X, Y ) = H(Y |X) +H(X)⇒H(X, Y )−H(X) = H(Y |X)

Notice that we still don’t have a name for the intersection.

What is the entropy of the random variable “room temperature in degrees Kelvin given
the room temperature in degrees celsius”? 10

Quick quiz

10

It’szero:onevariabledeterminestheother,i.e.,onceyouknowthetemperatureindegreescelsius/Kelvin,
youdon’thaveanyuncertaintyaboutthetemperatureinKelvin/celsius.InaVenndiagramrepresen-
tationbothsets,theonefor“roomtemperatureindegreesKelvin”andthatfor“roomtemperaturein
degreescelsius”wouldexactlyoverlap.
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3.5.1 Probabilistic channel model

We can apply what we have learned so far about information theory to our (probabilistic)
channel model. Assume that, as usual, X is the input and Y the output,

X Channel Y

• If X and Y are independent

H(X|Y ) = H(X),

that is, knowing Y does not provide any new information about X, which means,
the uncertainty we have about X is the same we had before knowing Y . In other
words, the transmission was useless.

• If X = Y

H(X|Y ) = H(Y |X) = 0

– what is the uncertainty left about X after knowing Y ?...none

– what is the information provided by X if we know Y ?...none

Furthermore, we have that,

H(X) = H(Y ) = H(X, Y ).

In this case, the channel is perfect (no distortion or disturbance).

3.6 Mutual information

It is a concept complementary to conditional entropy. Given the usual setup

X ∈ {x1, x2, · · · , xM} ,with known p(xi), i = 1, · · · ,M
Y ∈ {y1, y2, · · · , yL} ,with known p(yj), j = 1, · · · , L,

the formal definition is

Definition 3.6.1: Mutual information

I(X, Y ) =
M∑
i=1

L∑
j=1

p(xi, yj) log2

p(xi, yj)

p(xi)p(yj)

bits

symbol

We can think about the mutual information in two different ways
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the uncertainty we
have removed from
X due to knowing Y

I(X, Y )

information we have about
X due to knowing Y

X, Y as r.v.’s

X, Y as
information

sources

Mutual information and entropy are related

I(X, Y ) =
M∑
i=1

L∑
j=1

p(xi, yj) log2

p(xi, yj)

p(xi)p(yj)
=

M∑
i=1

L∑
j=1

p(xi, yj) log2

p(xi|yj)��
�p(yj)

p(xi)��
�p(yj)

=
M∑
i=1

L∑
j=1

p(xi, yj)

(
log2

1

p(xi)
+ log2 p(xi|yj)

)

=
M∑
i=1

L∑
j=1

p(xi, yj) log2

1

p(xi)
+

M∑
i=1

L∑
j=1

p(xi, yj) log2 p(xi|yj)

log2 x=− log2
1
x=

M∑
i=1

log2

1

p(xi)

L∑
j=1

p(xi, yj)︸ ︷︷ ︸
p(xi)

−
M∑
i=1

L∑
j=1

p(xi, yj) log2

1

p(xi|yj)

=
M∑
i=1

p(xi) log2

1

p(xi)︸ ︷︷ ︸
H(X)

−
M∑
i=1

L∑
j=1

p(xi, yj) log2

1

p(xi|yj)︸ ︷︷ ︸
H(X|Y )

= H(X)−H(X|Y )

Likewise, it can be shown that

I(X, Y ) = H(Y )−H(Y |X). (3.2)

If we go back to the graphical representation based on Venn diagrams,
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H(X|Y ) H(Y |X)I(X, Y )

H(X, Y )

H(X) H(Y )

we can see that the mutual information is the intersection between the entropies of X
and Y . If we keep in mind this diagram we can easily deduce any formula we need!!

Two special situations:

• If X and Y are independent

H(X) H(Y )

the mutual information is 0, and it can be easily proved mathematically:

I(X, Y ) = H(X)−H(X|Y )
H(X|Y )=H(X)

= H(X)−H(X) = 0,

in other words, Y does not provide any information about X.

• If X = Y

H(X) = H(Y )

the mutual information is

I(X, Y ) = H(X)−H(X|Y )
H(X|Y )=0

= H(X)− 0

= H(Y )−H(Y |X) = H(Y )
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What is the mutual information between two tosses of a dice? 11

Quick quiz

3.6.1 Properties

• I(X, Y ) = I(Y,X) ≥ 0

This symmetry (I(X, Y ) = I(Y,X)) of the mutual information goes to say that the
information between X and Y flows both ways: if X provides a certain amount
of information about Y , then that same amount of information is provided by Y
about X.

• I(X, Y ) ≤ H(X)

• I(X, Y ) ≤ H(Y )

All these properties can be easily inferred from the Venn diagram.

3.6.2 Mutual information from the standpoint of a communica-
tions system

If X is the symbol transmitted and Y is what we get at the other end of the channel,

X Channel Y

H(X) I(X, Y )

then H(X) is the information we have at the input of the channel12 and I(X, Y ) is the
information at the output since it is “the information we have about X due to knowing
Y ”. In other words, it is the amount of information that gets through the channel.
A couple of remarks are in order here: when we say “information that gets through the
channel” we mean

• error-free information, that is, if we say that the mutual information is, e.g., 2 bits
symbol

(recall mutual information is measured in bits per symbol), those 2 bits reach the
receiver with vanishing probability of error13, i.e., Pe → 0,

• per channel use, that is, every time we use the channel, that’s the amount of infor-
mation received at the other end.

Hence, the mutual information is the amount of error-free information (measured in
bits) that can get through per channel use.

Recall that in this module we are studying another way (other than the probability
of error) of measuring the performance of a communications system...this is it!!

11

It’szero:thefirsttosswillnotremoveanyuncertaintyaboutwhat’sgonnahappeninthesecondtoss
(thetossesareindependent).

12This is one of the interpretations of the entropy.
13i.e., an error probability as small as we like, say, 10−2000
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3.6.3 Example I

Let us consider the DMC

p(y1|x1)
x1 y1

p(y2|x2)
x2 y2

p(y3|x3)
x3 y3

p(y4|x4)
x4 y4

Notice that the probability of transmitting a symbol and receiving a different one is
0, and hence

p(yi|xi) = 1

p(yj|xi) = 0, ∀i 6= j.

When there is only one branch leaving a node, then its label (which is the probability
conditional on that node), must be 1a. For that reason, it is usually omitted.

aRecall that the sum of the labels on the branches leaving a node is 1.

Caveat

Additionally, we assume p(x1), p(x2), p(x3) and p(x4) are known.

What is happening here is: X ∈ {x1, x2, x3, x4} is transmitted, Y ∈ {y1, y2, y3, y4} is
received, but there is one-to-one mapping between the x’s and the y’s, and hence every
time you receive a y you know perfectly well which x was sent, and we have an error-free
transmission. In other words, all the information put at the input reaches the output.
Let us verify this using what we have learned so far.

The entropy of X is given by

H(X) =
4∑
i=1

p(xi) log2

1

p(xi)
.

Since p(yi) = p(xi) we have

H(Y ) =
4∑
i=1

p(yi) log2

1

p(yi)
=

4∑
i=1

p(xi) log2

1

p(xi)
= H(X).

Remember that entropy only depends on the probabilities (the distribution), not on the
values taken by the random variable.
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Next, we are going to compute the mutual information using the definition

I(X, Y ) =
4∑
i=1

4∑
j=1

p(xi, yj) log2

p(xi, yj)

p(xi)p(yj)

=
4∑
i=1

4∑
j=1

p(yj|xi)p(xi) log2

p(yj|xi)��
�p(xi)

�
��p(xi)p(yj)

p(yj |xi)=0
∀j 6=i
=

4∑
i=1

p(yi|xi)p(xi) log2

p(yi|xi)
p(yi)

p(yi|xi)=1
=

4∑
i=1

p(xi) log2

1

p(yi)

p(yi)=p(xi)
=

4∑
i=1

p(xi) log2

1

p(xi)
= H(X) = H(Y )

The information at the output of the channel is the same we had at the input!! We could
have inferred this using the interpretation we have been talking about all along:

I(X, Y ) = H(X)−H(X|Y ),

and H(X|Y ) is 0 because there is no uncertainty about Y if we know X, so that

I(X, Y ) = H(X)−����
�:0

H(X|Y ) = H(X).

3.6.4 Example II

What happens if, instead of the previous DMC, we had

1/4

1/4
1/4

1/4

x1 y1

1/4

1/4

1/4
1/4

x2 y2

1/
4

1/4

1/4

1/4
x3 y3

1/
4

1/
4

1/4

1/4x4 y4

?

Notice that, in this case, p(yj|xi) = 1
4
∀i, j, i.e., regardless of the symbol we transmit we

receive any of the output symbols with equal probability. According to the definition,
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the mutual information is given by

I(X, Y ) =
4∑
i=1

4∑
j=1

p(xi, yj) log2

p(xi, yj)

p(xi)p(yj)

=
4∑
i=1

4∑
j=1

p(yj|xi)p(xi) log2

p(yj|xi)��
�p(xi)

��
�p(xi)p(yj)

=
4∑
i=1

4∑
j=1

1

4
p(xi) log2

1/4

p(yj)
, (3.3)

and we need

p(yj) =
4∑
i=1

p(yj, xi) =
4∑
i=1

p(yj|xi)p(xi) =
1

4

4∑
i=1

p(xi) =
1

4
,

which does not depend on the input!! Using this in (3.3) we get

I(X, Y ) =
4∑
i=1

4∑
j=1

1

4
p(xi) log2

1/4

p(yj)
=

4∑
i=1

4∑
j=1

1

4
p(xi) log2

�
�1/4

�
�1/4

= 0,

i.e. no information gets through the channel: Y does not provide any information about
X because whatever X is transmitted every Y is equally likely. Notice that this ultimately
means that X and Y are independent (in which case the mutual information, given by
the intersection in the Venn diagram, is 0), and we can actually check it

p(xi|yj) =
p(yj|xi)p(xi)

p(yj)
=

1/4p(xi)

1/4
= p(xi) (Bayes Theorem).

3.6.5 Example III: Binary Symmetric Channel

1− p

p

p

1− p

0 0

1 1

p ≡ probability of error
p(X = 0) = α
p(X = 1) = 1− α

.

We want to compute the mutual information, which is given by

I(X, Y ) = H(Y )−H(Y |X). (3.4)

The formula involves computing H(Y ), and for that we need the probabilities of the
output symbols. Using the law of total probability we have

p(Y = 0) = p(

Y︷︸︸︷
0 |

X︷︸︸︷
0 )p(X = 0) + p(0|1)p(X = 1) = (1− p)α + p(1− α)

= α− pα + p− pα = α + p− 2pα

p(Y = 1) = p(1|0)p(X = 0) + p(1|1)p(X = 1) = pα + (1− p)(1− α)

= pα + 1− α− p+ pα = 1 + 2pα− (α + p),
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and we can easily check that p(Y = 0) + p(Y = 1) = 1 X. Using these probabilities we
obtain H(Y ) as

H(Y ) = p(Y = 0) log2

1

p(Y = 0)
+ p(Y = 1) log2

1

p(Y = 1)
,

but since we are computing the entropy of a binary random variable, we can use the
binary entropy function to express it, i.e.,

H(Y ) = Hb(p(Y = 0)) = Hb(α + p− 2pα)

= Hb(p(Y = 1)) = Hb(1− p(Y = 0)) = Hb(1 + 2pα− (α + p)). (3.5)

Notice that the argument of the binary entropy function is not the (binary) random
variable, but rather its parameter, i.e., the probability that the r.v. takes on one of the
values (either one of them).

Caveat

Only H(Y |X) is left to compute in order to calculate the mutual information. Using
the definition, we have

H(Y |X) =
M∑
i=1

p(xi)H(Y |X = xi) = p(X = 0)H(Y |X = 0) + p(X = 1)H(Y |X = 1)

= p(X = 0)

p(0|0) log2

1

p(0|0)
+ p(1|0) log2

1

p(1|0)︸ ︷︷ ︸
H(Y |X=0)

+

+ p(X = 1)

p(0|1) log2

1

p(0|1)
+ p(1|1) log2

1

p(1|1)︸ ︷︷ ︸
H(Y |X=1)

 .
Both Y |X = 0 and Y |X = 1 are binary r.v.’s: we can express their entropies using

the binary entropy function (actually, we are just applying the definition of entropy to
each conditional random variable)14. Hence,

H(Y |X) = αHb(p(0|0)) + (1− α)Hb(p(0|1)) = αHb(1− p) + (1− α)Hb(p)

Hb(p)=Hb(1−p)
= αHb(p) + (1− α)Hb(p) = Hb(p)(�α + 1−�α) = Hb(p) . (3.6)

Using equations (3.5) and (3.6) in Equation (3.4) the resulting mutual information is

I(X, Y ) = Hb(α + p− 2pα)−Hb(p).

Let us see what happens to this expression for three particular cases:

14Every time we see an expression involving logarithms and only two probabilities that are comple-
mentary, we should ask ourselves whether it’s possible to express that using the binary entropy function.
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• p = 0, that is, the probability of error is 0: we never make a mistake

I(X, Y ) = Hb(α)−��
��*

0
Hb(0) = Hb(α)

X is a binary random variable and hence its entropy is the binary entropy function
evaluated at the probability of one of the values, say 0, and hence H(X) = Hb(α)

= H(X),

i.e., all the information goes through the channel15 (it makes sense since there are
no errors), and when depicted just like in Section 3.6.2, we have

H(X) Channel I(X, Y ) = H(X)

with the information going in at the transmitter, H(X) (as usual), reaching the
other end of the channel.

• p = 1, that is, we always mix up the two symbols

I(X, Y ) = Hb(1 + α− 2α)−Hb(1) = Hb(1− α)−��
��*

0
Hb(1)

Hb is symmetric around 1/2 and hence Hb(1− α) = Hb(α)

= Hb(α) = H(X),

i.e., again all the information goes through the channel,

H(X) Channel H(X)

This makes sense since if we know the channel always mixes up the symbols, by
deciding the symbol opposite to that which we have received we will always be
right.

• p = 0.5, that is, we make mistakes half of the time

I(X, Y ) = Hb(�α + 0.5−�α)−Hb(0.5) = Hb(0.5)−Hb(0.5) = 0,

i.e., no information goes through the channel,

H(X) Channel 0

It is also reasonable: the channel lies half of the time and hence we know nothing
of the symbol transmitted at the sight of the one received (whatever we transmit,
the two output symbols are equally likely...a toss of a coin).

15Notice that H(X) is the information at the input!!
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3.7 Channel capacity

We have seen before that the information that gets through the channel is given by the
mutual information,

X Channel Y

H(X) I(X, Y ) = H(X)−H(X|Y )
= H(Y )−H(Y |X)

information we
put at the input information we

get at the output

For a specific channel, we are interested in the maximum amount of information that
can get through it, that is, we want to know the maximum mutual information that can
be attained...and this is known as the channel capacity,

C = max I(X, Y )
bits

symbol
or

bits

channel use
, 16

where the maximization is over the probability distribution of the input. Re-
member from Section 3.6.2 that when we talk about mutual information we presume
error-free information per channel use. Since capacity is simply the maximum of the
mutual information, it is also endowed with these two properties. Hence, the channel ca-
pacity is the maximum amount of error-free information that can get through the channel
per channel use.

Notice that the channel capacity depends on the mutual information and this, in turn,
on the conditional probabilities that characterize the channel. Therefore, the capacity of
the channel depends too on the conditional probabilities that characterize the channel.

3.7.1 Properties

X ∈ {x1, x2, · · · , xM}
Y ∈ {y1, y2, · · · , yL}

• C ≥ 0, since I(X, Y ) ≥ 0

• C ≤ log2M since

C = max I(X, Y ) = max {H(X)−H(X|Y )}

H(X|Y ) ≥ 0 and hence the above expression is maximum when H(X|Y ) = 0

≤ max {H(X)} = log2M

• C ≤ log2 L (analogous proof)

16Every time we use the channel we transmit a symbol, and hence bits
symbol is tantamount to bits

channel use .
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What is the capacity of the channel

ε

x1

y1

y2

? 17

Quick quiz

3.7.2 Example I

p(X = 0) = α
p(X = 1) = 1− α

0 0

1 1

X Y

This example is very similar to that in Section 3.6.3. Again, it’s clear that there will be
no errors. What is the capacity? In order to obtain the capacity we need to compute the
mutual information and maximize it,

I(X, Y ) = H(Y )−H(Y |X)
H(Y |X)=0

= H(Y )

What is the condition for the mutual information to be maximum? In other words, what
is condition for H(Y ) to be maximum? Y is a discrete random variable, and hence, its
entropy is maximum when the distribution is uniform18, that is, when α = 1/219. And
what is the value of that maximum? It’s log2 L = 1 bits

channel use
(L being the number of

values Y can take). Hence

C = 1
bits

channel use
,

and it is attained for α = 1/2.

We could have reasoned: all the information goes through (there are no errors!!), hence
the mutual information is equal to the information at the input, which is the entropy of
X. Now, X is a discrete r.v., and thus the maximum of its entropy is log2 2 = 1 bits

symbol
.

17 It’szero:hereM=1andwehave,usingtheabovepropertiesthatC≤log21=0(andC≥0).

18This is one of the properties for the entropy of a discrete random variable: it is maximum when the
distribution of the random variable is uniform.

19Notice that since X = Y we have p(Y = 0) = p(X = 0) = α and p(Y = 1) = p(X = 1) = 1− α.
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3.7.3 Example II

p(X = 0) = α
p(X = 1) = 1− α

0

1

2

3

4

5

1/2

1/2

1/2

1/2

X Y

If at the sight of the output we always know the symbol transmitted, this means that
all the information we put at the input reaches the output. Using the terminology from
this module, the mutual information between X and Y (the information at the output)
is equal to the entropy of X (the information at the input),

I(X, Y ) = H(X).

Now, since the capacity is the maximum of the mutual information, we have

C = max I(X, Y ) = maxH(X),

and the maximum of the entropy is (the logarithm of the number of possible values)
log2M = log2 2 = 1 bits

channel use
. Furthermore, we know that the maximum of the entropy

is always attained for a uniform distribution, and hence we reach the capacity when
p(X = 0) = p(X = 1) = 1/2. This is the confident-smart guy approach to solve this
problem...but we can also show this mathematically by following the standard procedure
that involves computing the mutual information and maximizing it afterwards. Using
Equation (3.2), the mutual information is given by

I(X, Y ) = H(Y )−H(Y |X).

We start by computing the entropy of Y , and for that we first need to compute the
probabilities p(2), p(3), p(4) and p(5). Using the law of total probability we have

p(Y = 2) = p(2, 0) +���
�:0

p(2, 1) = p(2|0)p(X = 0) =
1

2
α,
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where we have used that input 1 and output 2 is something that (jointly) cannot happen.
If we do the same for the remaining output symbols, we get

p(Y = 3) =
1

2
α

p(Y = 4) =
1

2
(1− α)

p(Y = 5) =
1

2
(1− α).

The entropy of Y is then given by

H(Y ) = p(Y = 2) log2

1

p(Y = 2)
+ p(3) log2

1

p(3)
+ p(4) log2

1

p(4)
+ p(5) log2

1

p(5)

=
1

2
α log2

2

α
+

1

2
α log2

2

α
+

1

2
(1− α) log2

2

(1− α)
+

1

2
(1− α) log2

2

(1− α)

= α log2

2

α
+ (1− α) log2

2

(1− α)

= α��
��*

1
log2 2 + α log2

1

α
+ (1− α)��

��*
1

log2 2 + (1− α) log2

1

1− α

=�α + α log2

1

α
+ 1−�α + (1− α) log2

1

1− α
= 1 +Hb(α).

On the other hand, the conditional entropy of Y given X is

H(Y |X) =
M∑
i=1

p(xi)H(Y |X = xi) = p(X = 0)H(Y |X = 0) + p(X = 1)H(Y |X = 1)

= α

(
p(2|0) log2

1

p(2|0)
+ p(3|0) log2

1

p(3|0)
+
���

���
���

�:0
p(4|0) log2

1

p(4|0)
+

+ +
���

���
���

�:0
p(5|0) log2

1

p(5|0)

)
+ (1− α)

(
���

���
���

�:0
p(2|1) log2

1

p(2|1)
+

+
��

���
���

��:0
p(3|1) log2

1

p(3|1)
+ p(4|1) log2

1

p(4|1)
+ p(5|1) log2

1

p(5|1)

)

= α
���

���
���

���:1(
1

2
log2 2 +

1

2
log2 2

)
+ (1− α)

���
���

���
���:1(

1

2
log2 2 +

1

2
log2 2

)
= 1.

Putting it all together we have

I(X, Y ) = H(Y )−H(Y |X) = 1 +Hb(α)− 1 = Hb(α).

Interpretation of the conditional entropy provides a shortcut to arrive at the same
conclusion: since there is no uncertainty about the value of X if we know Y , then
H(X|Y ) = 0 and

I(X, Y ) = H(X)−����
�:0

H(X|Y ) = H(X) = Hb(α),
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where the last equality stems from the fact that X is a binary random variable (whose
entropy is then given by the binary entropy function) with α being the probability of one
of the values it can take.

Once we have the mutual information, the capacity is its maximum value, and the
maximum of the binary entropy function is 1 when α = 1/2. Hence

C = max I(X, Y ) = maxHb (α) = 1
bits

channel use
,

i.e., what we predicted at the beginning.

Notice that whenever there is no overlap between outputs corresponding to different
inputs (i.e., different inputs do not yield the same output), the mutual information is
equal to the entropy of the input, and hence the capacity (its maximum) is log2M .

Remark

Computing the capacity always entails maximizing the mutual information. Now, we
have a standard procedure for finding the maximum of a function: we take the deriva-
tive and set it equal to 0. Why are we not doing that here? Because it turns out
that, in the above example, the mutual information is equal to a function (the binary
entropy function), whose maximum we know beforehand. However, keep in mind that,
in general, you need to differentiate the mutual information to find its maximum.

1
JAN Maximizing a function

3.7.4 Capacity of a Binary Symmetric Channel (BSC)

p ≡ probability of error
p(X = 0) = α
p(X = 1) = 1− α

1− p

p

p

1− p

0 0

1 1

We know from Section 3.6.5 the mutual information for this channel:

I(X, Y ) = Hb(α + p− 2pα)−Hb(p).

The capacity is the maximum of the mutual information, i.e.,

C = max I(X, Y ),

but how do we obtain this maximum? With respect to which parameter should we
maximize I(X, Y )?
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α = p(X = 0)

I(X, Y )

p ≡ probability of error
it depends on...

We have no control whatsoever over p (it is inherent to the channel!!) but we have
over α (we choose the input and hence its distribution). Therefore, we maximize I(X, Y )
with respect to α20,

C = max
α

I(X, Y ) = max
α
{Hb(α + p− 2pα)−Hb(p)}

Hb(p) doesn’t depend on α

= max
α

Hb(α + p− 2pα)−Hb(p)

the maximum of the binary entropy function is 1

= 1−Hb(p),

where the last equality exploits the fact that the maximum of the binary entropy function
is 1. Moreover, we know this maximum is attained when the argument of Hb is 1/2, and
hence we can find the particular value of α (which completely determines the input
distribution) that yields the capacity of the channel,

α + p− 2pα =
1

2
⇒ α(1− 2p) + p =

1

2
⇒ α =

1
2
− p

1− 2p
= �

��1−2p
2

���
�1− 2p

=
1

2
.

Therefore, in summary,

C = 1−Hb(p),

for α = 1/2, i.e., for a uniform input distribution. Notice the capacity of a BSC only de-
pends on the probability of error, p. We know the function Hb(p) (both its mathematical
expression and shape)

20We always maximize with respect to the distribution of the input. See Section 3.7.
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0 1
2

1

1

p

Hb(p)

and hence the plot for the capacity of a BSC is

0 1
2

1

1

p

C

If we focus only on the region between 0 and 1/2 (the probability of error should
always be less than 0.5; otherwise we flip every bit we receive), we see that the capacity
goes down as the probability of error increases

↑ p −→ ↓ C.

3.7.5 Computation of the capacity in the general case

In general,

C = max
p(xi)

I(X, Y ) = max
p(xi)
{H(Y )−H(Y |X)} bits

channel use
,

and we need to find the input distribution p(x1), p(x2), · · · that maximizes the mutual
information. How do we go about it? Both H(Y ) and H(Y |X) are functions21 of the

21different functions...
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input probabilities...but also of the conditional probabilities that characterize the channel

H(Y ) = f

p(x1), p(x2), · · · , p(xM),

these...we know︷ ︸︸ ︷
p(y1|x1), · · · , p(yL|xM)


H(Y |X) = g (p(x1), p(x2), · · · , p(xM), p(y1|x1), · · · , p(yL|xM)) ,

and p(x1), p(x2), · · · , p(xM) are variables with respect to which we have to maximize with
the constraint

p(x1) + p(x2) + · · ·+ p(xM) = 1.

Hence, the computation of the capacity is not straightforward in general, though there
are analytical expressions for certain channel models, e.g., symmetric channels.

Maximization is carried with respect to the input distribution, i.e., the probabilities of
the input symbols. This means that, whenever you are computing the capacity of some
channel, you cannot assume any value for p(x1), p(x2).... Rather, the latter are free
variables that you must select/tune in order to maximize the mutual information.

Maximization

Why is it, in general, hard to compute the capacity of a channel? 22

Quick quiz

3.8 Noisy-channel coding theorem

In the design of any communications system, a primary goal is to maximize the relia-
bility of the system. In other words, we want the probability of error to be as small as
possible. At first sight it might seem that the probability of error can never go down
below a certain value...we would think it should depend on the amount of noise added
by the channel. However, a fundamental result in information theory states that a
reliable transmission23 is always possible, regardless of the level of noise...as long as
the transmission rate is below a certain threshold, which is exactly the channel
capacity.

Definition 3.8.1: Noisy-channel coding theorem (Shannon, 1948)

It is possible to transmit with an arbitrarily low probability of error if the trans-
mission rate is below the channel capacity.

The conclusion to draw from this is that the level of noise in a channel does
not limit the reliability of the communication but rather its speed. So, for

22

Becausewemustsolveanoptimizationprobleminvolvingabunchofvariablessubjecttoaconstraint
(theprobabilitiesoftheinputsmustaddupto1).

23When we talk about a reliable transmission, we just mean an error-free one (see Section 3.6.2), i.e.,
a transmission in which we can attain a probability of error as small as we like.
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instance, can we transmit with probability of error 10−200? Yes, we can, as long as the
transmission rate is below the capacity. Hence, the latter ultimately indicates how fast
you can transmit through the channel.

We are going to see an intuitive (informal) proof of the theorem. Let us consider a
DMC with 4 inputs and 4 outputs

a a

b b

c c

d d

If we get an a at the receiver, we cannot tell whether the symbol transmitted was a
or d, and the same applies for the remaining symbols. Hence, this is not an error-free
transmission and, ultimately, the probability of error will depend on how often the channel
“lies” to us. On the other hand, if only a or c can be transmitted

a a

c c

b

d

there is no ambiguity and the probability of error is 0 (see the example and final remark
in Section 3.7.3). If we use the second DMC instead of the first one, we are decreasing
the transmission rate

4 symbols m = log2 4 = 2 bits
symbol

2 symbols m = log2 2 = 1 bits
symbol

encode

but this is the price we have to pay for a reliable transmission!! This is the fundamental
idea behind the noisy-channel coding theorem: in the transmitter we must use symbols
that are far apart enough so that after going through the channel they don’t overlap...or,
if this is not possible, so that the overlap does not occur very often.

If we try to apply this idea on a binary symmetric channel (BSC),
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1− p

p

p

1− p

0 0

1 1

we immediately see that it’s not possible. In general, this idea (of employing only a subset
of the input symbols) is hardly applicable to any DMC. Then, a more realistic goal is to
lower the probability of error so that “the overlap is very small”, e.g.,

1− 10−6

10−6

10−6

1− 10−6

0 0

1 1

There is overlap, but it’s very small, meaning that every time we receive, for instance, a
0, only once in a million the bit transmitted was 1.

We need some technique to lower the probability of error, and that technique is
(channel) coding. It consists in adding redundancy to the information we want to
transmit so that our chances to reliably recover it increase.

You are given a BSC with a probability of error equal to 0.49 (almost the flip of a coin).
Is a reliable transmission possible? 24

Quick quiz

3.9 Channel coding by example

1− p

p

p

1− p

0 0

1 1

In this channel, by definition, when an error happens during transmission (either
0→ 1 or 1→ 0), the bit is flipped, i.e., we receive a bit which is not the one transmitted.
We could build a more robust system:

24

Sure,thenoisy-channelcodingtheoremstatesthat,byusingchannelcoding(i.e.,addingredundancy)
youcanhaveanerrorprobabilityassmallasyoulike,buttransmissionwillbeslow(specifically,forthis
BSC,ofonlyC=1−Hb(0.49)≈3×10−4bitsperchanneluse).
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• instead of transmitting 0, we transmit 000,

0 −→ 000, (3.7)

• and instead of transmitting 1, we transmit 111,

1 −→ 111. (3.8)

Sequences of bits 000 and 111 are the so-called codewords (what is actually going to
be transmitted), each one representing the output of the coding scheme (given by the
mapping specified by equations (3.7) and (3.8)) for a piece of information (or message).

At the receiver, if we get something that is not a codeword, we try to fix it by assuming
that the codeword actually transmitted is the one that entails flipping the lesser number
of bits. If, for instance, we receive 110 then we take it that 111 was transmitted because
going from 111 to 110 entails flipping a single bit, while in order to go from 000 to 110
we must flip two of them. At the sight of the coding scheme (0↔ 000 and 1↔ 111), this
amounts to deciding “the bit that was transmitted is the one that is repeated the most”.

The resulting system is
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(1
−
p)

3

(1
− p

)2 p

(1−
p)p 2

000

001

010

100

101

110

011

111

000

111

transmitted codewords received codewords

Notice that now every channel use corresponds to three channel uses in the original
system25. Also, errors occur independently (the DMC is memoryless), and thus the
probability of, e.g., receiving 001 when 000 was transmitted is the probability of no error,
(1− p), times the probability of no error, (1− p), times the probability of error, (p), i.e.,
(1− p)2p. Mathematically,

p(000→ 001) = p(0→ 0)p(0→ 0)p(0→ 1).

If the received word is decoded as the bit that is repeated the most, then the system is
more robust because for an information bit to be received incorrectly two errors must
happen. Below, some examples of end-to-end transmission of a single bit are presented.

25..meaning that we need to spend three times the energy we were spending before!!
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information
bit

codeword received
word

decoded
word

decoded
bit

0 000 001 000 0 X

0 000 100 000 0 X

0 000 101 111 1

encoding transmission decoding codebook
checking

If we think of the system as transmitting a certain codeword and decoding another
(possibly different) one, the equivalent DMC is

1− p′

p′

p′

1− p′

000 000

111 111

C ′ = 1−Hb(p
′)

(still a BSC)

and it can be shown that

p′ < p,

which means that using channel coding gives rise to an increase in the capacity because

C = 1−Hb(p)

0 1
2

1

1

p

C

However, the capacity is the maximum amount of information per channel use, and
using this composite channel is equivalent to 3 channel uses of the original one. In
both cases, we are transmitting the same amount of information, 1 bit, but now we need
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three (old) channel uses. Therefore, in order to decide if this coding scheme is worth it
what we should be assessing is whether

C ′

3︸︷︷︸
information per use

of the original channel

> C.

The code we have just seen is the so-called repetition code, but there are many coding
schemes. Here we only focus on block codes like the one in the example.

3.10 Block codes

The coding schemes we’ll be talking about here are essentially mappings between se-
quences of information bits onto sequences of encoded bits. The input is a word (vector)
of k bits and the output is another word, a codeword, of n bits.

B[1] B[2] · · · B[k] X[1] X[2] · · · X[n]

k bits n encoded bits

message codeword

with n > k (since otherwise we would not be adding any redundancy).
The code rate is

R =
k

n
,

and can be interpreted as the number of information bits per bit transmitted. Notice
that (since n > k) R is always between 0 and 1, i.e., 0 < R < 1.

If R is large, are we adding a lot or very little redundancy? 26

Quick quiz

We say that the code is (n, k), with n being the block length.

For the block code
0 → 000
1 → 111

,

we have
k = 1

n = 3

}
⇒ R =

1

3
.

Example: BSC

26

IfRislargethatmeansk(numberofbitsinthemessage)isverycloseton(thenumberofbitsinthe
codeword),andhenceweareaddingverylittleredundancy.
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The same code rate is achieved for other block lengths: the code

00 → 000000
01 → 111000
10 → 011000
11 → 101000

,

has R = 2
6

= 1
3
.

Where does channel coding fit in our communications system? We put the encoder 27

before the DMC and the decoder afterwards.

· · · · · · DMC · · · · · ·

DMC
encoder X[i] Y [i]

DMC
decoder

B[l] B̂[l]
1 2 k 1 2 n 1 2 n 1 2 k

Roughly, what happens in a typical system is

1. we wait until we have k bits to be transmitted, that are then passed to the...

2. ...DMC encoder, which yields a codeword with n bits.

3. These are transmitted through the DMC28, and the received n bits make up the
input for...

4. ...the DMC decoder, which is meant to recover the k bits transmitted (as usual, the
decoded bits might match or not those transmitted, i.e., again we have estimates).

Knowing these channel coding concepts, we can state the noisy-channel coding theo-
rem in a more precise manner:

1. If the code rate, R, times the number of bits per symbol29, m, is below the channel
capacity, then for δ > 030, there exists a code with block length n (for n large
enough) whose probability of error is below δ, i.e.,

mR < C ⇒ ∀δ > 0,∃ code yielding Pe < δ

2. If mR > C, the probability of error of any code has a non-zero lower bound, i.e.,

mR > C ⇒ Pe > ε,

where ε > 0 is a constant.

27Notice that this encoder has nothing to do with the encoder of the previous module!!
28This discrete memory-less channel encompasses the encoder, decoder, (Gaussian) channel, demodu-

lator and detector blocks that we studied in the previous module.
29Every time we use the channel we transmit an element of the constellation that carries m = log2M

bits (M being the number of elements in the constellation), of which only mR contain information.
30...and we can choose δ as small as we like!!
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3. There exist codes attaining the channel capacity, i.e., such that mR = C.

Great!!...but how do we build them? The theorem doesn’t provide a recipe. It only
states they exist. In general:

• R low: easy to find a code attaining the capacity.

• R high: hard to find a code attaining the capacity.

Notice that R is low when n is large, in which case the code is adding a lot of
redundancy, (n−k)31. On the contrary, if R = 1, then we would not be adding any
redundancy (not meaningful).

Assume the capacity of a certain channel is C = 2 bits
channel use

, and we would like a system
with a probability of error Pe = 10−6. Is it possible to find a code allowing a transmission
rate mR = 0.1? Yes, and it should be fairly easy to find such a code (transmission rate
is far away from the capacity). Is it possible to find a code allowing a transmission rate
mR = 1.9? Yes, but it’s going to be hard to find such a code (we are very close to the
capacity!!).

Example

3.11 Capacity of the Gaussian channel

So far, we have been working with discrete memoryless channels (DMCs). Now we are
going to extend the previous definitions for the Gaussian channel where the input and
output are continuous (rather than discrete) random variables. The output of the channel
is modeled as a random variable Y whose structure is given by32

Y = X + Z
X + Y

Z

with

• X ≡ continuous r.v.

• Z ≡ Gaussian r.v. with zero mean and variance σ2
z .

Since both X and Z are continuous random variables, so is Y (their sum), and the latter
is related with the input through the conditional pdf fY |X(y|x) (Gaussian with mean X
and variance σ2

z).
The capacity is still the maximum of the mutual information between the input and

output variables, but these are now continuous and we need to extend the concepts of
entropy, joint entropy, conditional entropy and mutual information to the continuous
case.

31...and hence our transmission is not very efficient: we are transmitting very few (mR with R small)
information bits per channel use...we want R to be large

32Notice that this is the Gaussian channel considered in the previous module.
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3.11.1 Differential entropy

The counterpart of entropy for continuous random variables is the

Definition 3.11.1: Differential entropy

h(X) =

∫ ∞
−∞

fX(x) log2

1

fX(x)
dx bits

This metric does not have the intuitive meaning that conventional entropy has (either
uncertainty or average amount of information produced)33 because the probability of a
continuous random variable taking on a specific value is null (and hence the corresponding
autoinformation is ∞!!). Notice the units are not bits

symbol
anymore but simply bits.

X ∼ U [0, b]

h(X) =

∫ b

0

1

b
log2 b dx = log2 b

Notice:

• b < 1⇒ h(X) < 0, which goes against the non-negativity property of the discrete
entropy, and

• b = 1 ⇒ h(X) = 0, which, according to the interpretation we have for a discrete
r.v., means that uncertainty is 0. However, X is not determinist and hence there
is uncertainty.

Example: uniform r.v. in the interval [0, b]

Differential entropy for two continuous probability distributions of interest

It can be shown that

• If X ∼ N (µ, σ2
X), then

h(X) =
1

2
log2

(
2πeσ2

X

)
bits

...regardless of the mean!! That is given: if you compute the entropy of a
Gaussian random variable with zero mean, the entropy of another Gaussian with
mean µ must be the same since the probabilities have not changed, only their labels.
Recall that, at the beginning of this module, we said that the entropy (of a discrete
r.v.) does not depend on the particular values the variable take but only on the
probabilities.

• If X ∼ U [a, b] then

h(X) = log2(b− a)

33Still, we can think of differential entropy as a proxy for the uncertainty of a random variable.
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Bounds on the differential entropy

• If X is a continuous unbounded (it takes on values from −∞ to ∞, i.e., X ∈
(−∞,∞)) r.v. with variance σ2

X , then the distribution that yields the maximum
entropy is the Gaussian distribution, i.e.,

h(X) maximum⇔ X ∼ N
(
·, σ2

X

)
,

regardless of the mean. A corollary of this result is that, for any continuous un-
bounded r.v. X,

h(X) ≤ 1

2
log2

(
2πeσ2

X

)
bits

• If X is a continuous bounded r.v. between a and b (notice that a Gaussian r.v.
is not bounded!!), then the distribution that yields the maximum entropy is the
uniform

h(X) maximum⇔ X ∼ U [a, b] ,

and hence for any continuous bounded r.v. X,

h(X) ≤ log2(b− a)

3.11.2 Two continuous random variables

For continuous random variables, joint and conditional (differential) entropy as well as
mutual information are analogously defined by, essentially, replacing summations with
integrals, and pmf’s with pdf’s.

Definition 3.11.2: Joint differential entropy

h(X, Y ) =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) log2

1

fX,Y (x, y)
dxdy

Definition 3.11.3: Conditional differential entropy

h(X|Y ) =

∫ ∞
−∞

fY (y)

∫ ∞
−∞

fX|Y (x|y) log2

1

fX|Y (x|y)
dxdy

or, equivalently,

h(X|Y ) =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) log2

1

fX|Y (x|y)
dxdy

They are natural extensions to the definitions seen for discrete random variables, and
the same identities hold, e.g.,

h(X, Y ) = h(X|Y ) + h(Y )

Definition 3.11.4: Mutual information

I(X, Y ) =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x, y) log2

fX,Y (x, y)

fX(x)fY (y)
dxdy
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In order to compute differential entropies we need to take into account

0 log2

0

0
= 0 .

Just like for discrete random variables, mutual information can be expressed using
the entropy (differential, in this case),

I(X, Y ) = h(Y )− h(Y |X) = h(X)− h(X|Y )

Unlike differential entropy, the mutual information between continuous random vari-
ables has the same meaning as in the discrete case: the information/knowledge that one
variable provides about the other. Furthermore, the same properties hold

• I(X, Y ) ≥ 0 (non negative function)

• I(X, Y ) = 0⇔ X and Y independent

• I(X, Y ) = I(Y,X)

After this huge parenthesis we go back to...

3.11.3 Computation of the capacity for the Gaussian Channel

The capacity is computed just like before. We start from

Y = X + Z

with
X ≡ input variable

Y ≡ output variable

Z ∼ N (0, σ2
z)

They are related through fY |X(y|x)

and the capacity is given by
C = max

fX(x)
I(X, Y )

where fX(x) is the pdf of the input random variable (and hence it determines its distri-
bution) and

I(X, Y ) = h(Y )− h(Y |X).

The entropy of Y , h(Y ), is not bounded34, something that did not happen in the
discrete case, for which the maximum was log2M , with M being the number of inputs.
This entails the maximum can be infinity!! We are going to cope with this difficulty by
adding a constraint to the maximization problem: the power of X must be below certain
threshold P ,

E
[
X2
]
≤ P.

This is a natural constraint in a communications system: you cannot use all the power
you want.

34...since we know that Y is a continuous random variable (because its definition involves Z) and hence
the differential entropy can be as large as h(Y ) = 1/2 log2 2πeσ2

Y with σ2
Y unbounded.
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The resulting optimization problem is

C = max
fX(x)/E[X2]≤P

I(X, Y ).

Going back to the expression for the mutual information, we have

I(X, Y ) = h(Y )− h(Y |X),

and we know the distribution of Y |X,

Y |X ∼ N
(
X, σ2

z

)
because Y is simply X plus Gaussian noise with variance σ2

z , and adding a constant to a
Gaussian r.v. only shifts its mean. Therefore, we have

I(X, Y ) = h(Y )− 1

2
log2 2πeσ2

z .

We know nothing about the distribution of Y , but the latter is anyway a continuous
(unbounded) random variable with variance, say σ2

Y , and hence

h(Y ) ≤ 1

2
log2 2πeσ2

Y

with equality holding when Y is Gaussian. Notice that the variance of this r.v. is, in
general, different from that of the noise (i.e., σ2

Y 6= σ2
z). Then,

I(X, Y ) ≤ 1

2
log2 2πeσ2

Y −
1

2
log2 2πeσ2

z

=
1

2
log2

��
�2πeσ2

Y

��
�2πeσ2

z

=
1

2
log2

σ2
Y

σ2
z

,

and we are going to express the variance of Y in a different way35

σ2
Y = E

[
Y 2
]
− E [Y ]2 = E

[
(X + Z)2

]
− E [X + Z]2

= E
[
X2 + Z2 + 2XZ

]
−
(
E [X] +��

��*0
E [Z]

)2

= E
[
X2
]

+ E
[
Z2
]

+ 2E [XZ]− E [X]2

X,Z indep:
E[XZ]=E[X]E[Z]

= E
[
X2
]

+ E
[
Z2
]

+ 2E [X]��
��*0

E [Z]− E [X]2

= E
[
X2
]

+ E
[
Z2
]
− E [X]2 .

In order to maximize I(X, Y ) we need to maximize σ2
Y , and for that we would like

E [X] = 0 (this might bring back memories of centered constellations). Hence,

σ2
Y ≤ E

[
X2
]

+ E
[
Z2
]

= E
[
X2
]

+ σ2
z ,

35The notation E [·]2 means the square of the expectation.
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where we have used that E [Z2] is the variance of the noise, σ2
z , since the latter has zero

mean.
The above expression is the maximum value for σ2

Y , and going back to the expression
for the mutual information we have

I(X, Y ) ≤ 1

2
log2

σ2
Y

σ2
z

=
1

2
log2

E [X2] + σ2
z

σ2
z

=
1

2
log2

(
1 +

E [X2]

σ2
z

)
,

and the capacity is given by

C = max
fX(x)/E[X2]≤P

I(X, Y ) ≤ max
fX(x)/E[X2]≤P

1

2
log2

(
1 +

E [X2]

σ2
z

)
if we want to maximize the expression inside the logarithm, we should choose E [X2] as
large as we can, i.e., E [X2] = P

=
1

2
log2

(
1 +

P

σ2
z

)
bits

symbol
.

Sometimes you see a similar expression in which it is assumed

• the channel is baseband with bandwidth B, which means that the symbol rate
should be36

Rs = 2B
symbols

second
,

• at the receiver there is an ideal filter with the same bandwidth37 as the channel,
that is meant to bound the power of the noise38, which is then (see Section 1.8.2)

σ2
z = N0B.

In such case, the capacity in bits per second is given by

C =
1

2
log2

(
1 +

P

N0B

)
bits

��
��symbol

2B�
���

�symbols

second
= B log2

(
1 +

P

N0B

)
bits

second
.

36...in order to alleviate nuisances such as inter-symbol interference (discussed in more advanced
courses)

37We could use a filter with a larger bandwidth (never lower since that would effectively reduce
the bandwidth of the signals that can be transmitted without distortion) but that wouldn’t help the
transmitted signal since the maximum bandwidth was already determined by the channel, and it would
make noise (at the receiver) worse.

38Recall that there must be a filter at the receiver or, otherwise, the power of the thermal noise will
be infinity!!
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3.12 Appendix: pairwise symmetry in DMCs

1− ε0

ε0
1− ε1

ε1

ε1

1− ε1

1− ε0

ε0

x0

x1

x2

x3

y0

y1

y2

y3

There is symmetry in this DMC (although this is not a strongly symmetric channel).
Specifically, x0 and x3 play the same role: they are connected (through the same condi-
tional probabilities) to the output symbol across, and the neighboring inner one. Thus,
when maximizing the mutual information to obtain the capacity, their probabilities should
be the same...Why? Let us assume that we compute the capacity and it is attained for a
distribution in which the first symbol is more likely than the last one, i.e., p(x0) > p(x3).
If we turn the channel upside down,

1− ε0

ε0
1− ε1

ε1

ε1

1− ε1

1− ε0

ε0

x3

x2

x1

x0

y3

y2

y1

y0

the connections and their corresponding labels are the same. Then, computing the capac-
ity all over again following the same procedure39, we would get that, again, it is attained
for an input distribution in which the first symbol is more likely than the last symbol,
i.e, for p(x3) > p(x0)...but the channel is the same!!. Since we arrived at a contradiction,
it is not possible that p(x0) > p(x3). But we can apply the same reasoning assuming
p(x0) < p(x3), and that would lead to another contradiction. Then, it must be the case
that p(x0) = p(x3).

39Forget where you are coming from: you are given this channel and you apply the standard procedure.
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We could apply the same reasoning to justify that the capacity must be attained for
p(x1) = p(x2).

173



174



Chapter 4

Analog modulation techniques

At the beginning of the course we saw there are two ways of representing information:

digital information is carried by symbols belonging to a finite alphabet, which are simply
finite-duration signals.

T

−A
t

s0(t)

T

A

t

s1(t)

Alphabet

We already know the model for this

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A+ n

transmitter receiver

analog information is carried by a continuous waveform

t

x(t)
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This could be either voice, video, audio...

Here we do not have the concept of symbol: the number of waveforms the trans-
mitter can use is infinite and their duration is not limited.

In order to transmit information in analog format we have two possibilities

• discretize the signal and transmit it using a digital system

• transmit it directly using an analog system.

Nowadays, the usual approach is the first one. However, there still exist some analog
communications systems, and that’s why it’s interesting to know how they work on a
basic level.

Depending on the type of channel, transmission can be

• Baseband

• Passband

4.1 Baseband analog transmission

The information signal (a continuous waveform) is transmitted as is

Analog
source

h(t)

BB channel

x(t)

BB signal

y(t)

Notice that we are denoting as y(t) the signal at the output of the channel.
The channel acts as an LTI system

x(t)
h(t)

y(t) = x(t) ∗ h(t)

w
W w

H(jw)

W ′ > W
w

Y (jw) = X(jw)H(jw)

W

FT
FT FT

Some examples are:

• telephone subscriber loop (not used that much nowadays...)
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• public address systems

• closed-circuit TV

These system are in practice obsolete nowadays, and hence we are going to focus on...

4.2 Passband analog transmission (modulation)

At the beginning of the course we talked very briefly about modulation and why it is
necessary. Let us assume that we want to transmit the same baseband signal as before

w

X(jw)

W

x(t)
FT • baseband signal

• bandwidth W

but now the channel is passband

w|
-wc

wc −W1 wc +W1

|
wc

W

• passband channel

• bandwidth 2W1

with wc −W1 > W , that is, the spectrum of transmitted signal does not fit in the
channel. Mathematically, the signal cannot go through the channel because

Y (jw) = X(jw)H(jw) = 0.

In order to transmit x(t) through this channel, we need to shift (translate) the spec-
trum of x(t), X(jw), to the frequency band in which the spectrum of the channel is
non-null...and that is achieved using a carrier signal

W

×

|
−wc

|
−wc

cos(wct)
carrier signal

Mathematically,

x(t) cos(wct)
DFT←−−−−−−−−→ 1

2
X(j(w − wc)) +

1

2
X(j(w + wc))

This operation is called modulation. Notice the three signals that come into play
here

y(t) = x(t) · cos(ωct)
modulated
signal

modulating
signal

carrier
signal
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4.2.1 Goals of modulation

• To adapt the transmission to the characteristics of the channel (a passband channel
will not allow baseband signals to pass through!!)

• To allow the transmission of multiple information signals

user #1

X(jw)

user #2

Y (jw)

When you switch TV or radio stations, you are actually selecting a new band of
frequencies.

• To spread the signals across a wider bandwidth. Sometimes, spreading the band-
width of the transmitted signal provides some protection against noise or unautho-
rized users.

4.2.2 Types of modulation

For us, x(t) is:

• a baseband signal, i.e., X(jw) = 0,∀ |w| > W

• a power signal, i.e., whose power is finite

• a realization of a band-limited WSS random process X(t) with SX(jw) = 0,∀ |w| >
W

Transmission of signal x(t) through the channel is achieved by embedding it in a
carrier signal of the form

Ac cos(wc t+φc)

amplitude
frequency

phase

and the signal x(t), containing the information, can be imposed in
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• the amplitude,

• the frequency, or

• the phase,

and we say that x(t) modulates the amplitude, frequency or phase of the carrier.
In general, the modulated signal (that resulting from modulation, which is transmitted

through the channel) has the form

modulated signal ≡ y(t) = r(t) cos(wct+ ϕ)

• if x(t) is embedded in r(t) ( 6⇒ r(t) = x(t)1) −→ linear or amplitude modulation

Then, we have a modulated signal of the form

y(t) = r(t) cos(wct+ ϕ)

with constant frequency and phase.

• if x(t) is embedded in ϕ(t) −→ angular modulation

We have a modulated signal of the form

y(t) = A cos(wct+ ϕ(t))

with constant amplitude and frequency.

In both cases, the spectrum of the information signal is moved to another frequency band.

4.3 Linear or amplitude modulation

The information signal, x(t) is imposed upon the amplitude of the carrier

x(t) Linear modulation y(t)

y(t) = r(t) cos(wct+ ϕ) = r(t) (cos(wct) cosϕ− sin(wct) sinϕ)

= r(t) cosϕ︸ ︷︷ ︸
xi(t)

in-phase compo-

nent

cos(wct)− r(t) sinϕ︸ ︷︷ ︸
xq(t)

quadrature com-

ponent

sin(wct),

where we have used that

cos(A+B) = cosA cosB − sinA sinB.

This is the structure of the modulated signal in any linear modulation, and depending
on how we choose the in-phase and quadrature components, we get a different kind of
linear modulation.

We are going to rewrite the in-phase and quadrature components as a function of
some parameters that will allow to decide the type of the linear modulation:

1...since some transformation might be applied
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• xi(t) = r(t) cosϕ = Ac + Amx(t)

• xq(t) = r(t) sinϕ = Anx̃(t)

where x̃(t) is a certain transformation of x(t).
Then, depending on the values of Ac, Am and An, we will have different modulations:

• Ac 6= 0, Am 6= 0, An = 0 → AM modulation (conventional amplitude modulation)

• Ac = 0, Am 6= 0, An = 0 → DSB modulation (Double Side Band modulation)

• Ac = 0, Am 6= 0, An 6= 0 → SSB modulation (Single Side Band modulation)

Notice that An = 0 means the quadrature component is null.

4.4 AM modulation

y(t) = (Ac + Amx(t)) cos(wct) (4.1)

Let us assume that x(t) is normalized, that meaning

|x(t)| ≤ 1

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1 information signal

If it was not normalized, we could normalize it by doing

xn(t) =
x(t)

max |x(t)|
,

but let us assume it already is.
Equation (4.1) can be rewritten as

y(t) = (Ac + Amx(t)) cos(wct)
Am=Am

Ac
Ac= Ac

(
1 +

Am
Ac

x(t)

)
cos(wct)

Am
Ac

=m
= Ac (1 +mx(t)) cos(wct)

where

m =
Am
Ac
≡ modulation index

180



We would like Ac (1 +mx(t)) to be greater than or equal to zero, i.e.,

Ac (1 +mx(t)) ≥ 0

Why? Because in such case the modulated signal is a cosine multiplied by a positive
signal ⇒ this positive signal is the envelope of the resulting signal and demodulation is
very easy.

0 0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1 information signal
modulated signal

envelope

Notice that the cosine varies much more rapidly than Ac (1 +mx(t)), and somehow
the positive peaks of the former are “sampling” the latter.

The envelope of an oscillating signal (for example, a cosine) is a smooth signal that
outlines its extremes. We have upper and lower envelopes. Intuitively, by smoothly
joining the peaks of the signal that are above 0 we get the upper envelope.

Envelope of a signal

How can we make sure that Ac (1 +mx(t)) ≥ 0? If the signal is normalized, i.e.,
|x(t)| ≤ 1, then it is enough to choose 0 < m ≤ 1:

0 < m ≤ 1

|x(t)| ≤ 1

}
⇒ (1 +mx(t)) ≥ 0⇒ demodulation is very easy

y(t) Ac(1 +mx(t)) x(t)

extract envelope solve for x(t)

What happens if m > 1 ? It might happen that Ac (1 +mx(t)) < 0 at some point,
in which case
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The envelope of the modulated signal is not Ac (1 +mx(t)) anymore (some samples
have changed sign and are now in the negative part). This phenomenon is called over-
modulation,

m > 1⇒ overmodulation,

and demodulation is not that easy anymore.

4.5 Angular modulations

The information is in the argument of the cosine signal, either in the phase or the fre-
quency.

These are much more complex modulations than their linear counterparts. Sometimes,
they can only be studied through approximations. Moreover, the required bandwidth is
bigger. However, the advantage is that they are less affected by noise. They trade off
bandwidth for immunity against noise.

The general expression for the modulated signal is now

y(t) = A cos (wct+ ϕ(t)) = A cosφ(t),

where

φ(t) = wct+ ϕ(t) ≡ instantaneous phase (everything inside the cosine)

From it, we have

dφ(t)

dt
= wi(t)

rad

second
≡ instantaneous frequency in radians.,

which in hertz is

1

2π

dφ(t)

dt
= fi(t)Hz ≡ instantaneous frequency.

Doing some algebra, we get

1

2π

dφ(t)

dt
=

1

2π

d (wct+ ϕ(t))

dt

wc=2πfc
= fc +

1

2π

dϕ(t)

dt

If x(t) is the information signal
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• ϕ(t) = βx(t) −→ Phase modulation (PM)

β ≡ phase deviation constant

• fi(t) = fc + fdx(t) −→ Frequency modulation (FM)

fd ≡ frequency deviation

The frequency being modulated is the instantaneous frequency, and not the carrier
frequency.

Caveat

It can be shown that in FM the above equation entails the phase varies according to

ϕ(t) = 2πfd

∫ t

−∞
x(u)du.

Hence,

• y(t) = A cos(wct+ βx(t)) −→ PM
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Here, quick changes in the information signal, x(t), indeed cause sudden changes in
the modulated signal.

• y(t) = A cos
(
wct+ 2πfd

∫ t
−∞ x(u)du

)
−→ FM
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Here the integral will not allow the quick changes in x(t) to cause sudden changes
in the modulated signal
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encoder-modulator connection, 63
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mean, 78
energy of a process, 23
entropy, 133

interpretation, 134
properties, 135

equivalent noise bandwidth, 37

filtering of a process, 27

Gaussian channel, 47

capacity, 166
Gaussian process, 31
Gram-Schmidt

example, 68
process, 64

gray mapping, 129

Hilbert space, 54

information, 131

joint entropy, 137

kiss number-based approximation, 127

linear modulation, 179
linear time-invariant systems, 27
looser bound, 126
LTI systems, 27

MAP rule, 102
maximum a posteriori rule, 102
maximum likelihood rule, 105
ML rule, 105
modulator, 49
mutual information, 142

properties, 145

noisy-channel coding theorem, 158

orthonormal basis, 58
overmodulation, 182

passband transmission, 177
power of a process, 23
power spectral density, 25
probability of error

4-QAM, 123
computation, 111
computation for N > 1, 120
kiss number-based approximation, 127
looser bound, 126
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union bound, 126
proximity rule, 105
PSD, 25

receiver
causal matched filters-based, 96
correlators-based, 88
matched filters-based, 96

sequential transmission, 129
signal-to-noise ratio, 44
SNR, 44

thermal noise, 34
transmitter, 48, 77

union bound, 126

white process, 32
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