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Linearity

“Using a term like
nonlinear science is like
referring to the bulk of
zoology as the study of
non-elephant animals”

— Stanislaw Ulam
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Non-linear dynamic model

We consider the same state equation as before

xt = Fxt−1 + vt ,

...but now the connection between the state and the observations
is given by the (vector) function h : RM → RN (plus additive
Gaussian noise like before)

yt = h (xt) + wt ,

with h being a vector of scalar functions of a vector

h (xt) =


h1 (xt)
h2 (xt)

...
hN (xt)


We cannot apply the Kalman filter!!
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Linearized dynamic model

Goal

To apply the KF over the non-linear model to estimate xt given
y1, y2, · · · , yt

We can build a linear approximation to the observation equation1

using a first-order Taylor series,

h (xt) ≈ h
(
x0
)

+

[
∂ h

∂xt

]
xt=x0

(
xt − x0

)
,

where [
∂ h

∂xt

]
=


∂ h1
∂x1,t

∂ h1
∂x2,t

· · · ∂ h1
∂xM,t

∂ h2
∂x1,t

∂ h2
∂x2,t

· · · ∂ h2
∂xM,t

...
...

. . .
...

∂ hN
∂x1,t

∂ hN
∂x2,t

· · · ∂ hN
∂xM,t


is the Jacobian matrix (of partial derivatives) of h.

1We could do the same thing to deal with a non-linear state equation!!
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Deriving the extended Kalman filter

EKF defines the corrected observations,

ỹt = yt − h
(
x0
)

+

[
∂ h

∂xt

]
xt=x0

x0,

which yield an approximate dynamic model which is both linear
and Gaussian

xt = Fxt−1 + vt

ỹt =

[
∂ h

∂xt

]
xt=x0

xt + wt

It is straightforward to apply the KF on the previous model.

Success!!
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Extended Kalman Filter

Prediction

x̂t|t−1 = Fx̂t−1|t−1

Pt|t−1 = Q + FPt−1|t−1F>

Update

Kt = Pt|t−1

[
∂ h

∂xt

]>
xt=x0

([
∂ h

∂xt

]
xt=x0

Pt|t−1

[
∂ h

∂xt

]>
xt=x0

+ R

)−1

x̂t|t = x̂t|t−1 + Kt(yt − h(x̂t|t−1))

Pt|t = Pt|t−1 −Kt

([
∂ h

∂xt

]
xt=x0

Pt|t−1

[
∂ h

∂xt

]>
xt=x0

)
K>n ,

where Q is the covariance matrix of vt , and R that of wt .

The linearization point x0 must be close enough to xt for the
algorithm to work properly. Usually, we take x0 = x̂t|t−1.
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Example of non-linear function for tracking

Goal

Localization and tracking of an object
moving with a known constant velocity c.

S2 S4

S1 S3

Same state equation as before,

xt = xt−1 + cT + vt ,

...a more realistic observation equation based on the Received
Signal Strength Indicator (RSSI),

yt,i = k1 − k2 log ‖xt − si‖︸ ︷︷ ︸
RSSIi

+wt,i , i = 1, · · · ,N

with k1 and k2 being some known constants and si the
position of the corresponding sensor.

( previously, yt = xt + wt )
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Example

True trajectory
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Example

Sensors readings
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Example

Result when filtering using only Sensor 2
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Example

Result when filtering using Sensors 1 and 2

Sensors cannot disambiguate the direction.
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Example

Result when filtering using the four sensors
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Unscented Kalman filter

Another non-linear extension of the Kalman filter (alternative
to EKF)...

The model:

xt = f (xt−1, vt) , vt ∼ N (0,Qn)
yt = Htxt + wt , wt ∼ N (0,Rn)

The observation equation is linear...but the state equation is
not (f is any arbitrary vector function)

It relies on the...

unscented transformation

a method for computing the moments of a Gaussian random
variable that undergoes a nonlinear transformation.

...which in turn makes use of a...
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Sigma point representation

Let us consider p(xt |y1:t) = N (xt |x̂t ,Pt) .

We can represent this
distribution using a collection of (deterministic) sigma points

Xt(0) = x̂t , Wt(0) = κ/(M + κ)

Xt(i) = x̂t +
(√

(M + κ)Pt

)
i
, Wt(i) = 1/ (2(M + κ))

Xt(i + M) = x̂t −
(√

(M + κ)Pt

)
i
, Wt(i + M) = 1/ (2(M + κ))

for i = 1, · · · ,M , where κ ∈ R and
(√

(M + κ)Pt

)
i

is the i-th

column of the matrix square root of (M + κ)Pt .

Theorem: Sigma points

This set of weighted samples has the same sample mean and
covariance as the original distribution.
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Steps in the unscented Kalman filter

Once the sigma points are computed, the prediction step at time
t + 1 can be carried out as follows:

1 Propagate each sigma point through the non-linearity f

Xt+1|t(i) = f(Xt(i), 0).

2 Compute the predicted mean

x̂−t+1 =
2M∑
i=0

Wt(i)Xt+1|t(i).

3 Compute the predictive covariance

P−t+1 =
2M∑
i=0

Wt(i)
(
Xt+1|t(i)− x̂−t+1

) (
Xt+1|t(i)− x̂−t+1

)>
The update step is carried out as in the standard KF.
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Remarks

The mean vector and covariance matrix computed by propagating
the sigma points through the nonlinearity are still estimates, but
more accurate than those produced by the EKF. They are correct up
to the 2nd order of a Taylor expansion. X

Approximations are still Gaussian, i.e., the method is not suitable
when multimodal posterior distributions are expected.

The UKF can be used without computing derivatives. A
linearization of the model is implicit, though (i.e., the UKF can be
re-written as a linearization method). X

Different choices of sigma points are possible. If a Gauss-Hermite
quadrature rule is used, a larger number of points is needed but the
approximations are more accurate as well.

UKF algorithms look simple to implement. However performance
may actually vary depending, e.g., on the number of points.
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State space models

Formal statement of the estimation problem...

...in a Bayesian framework.

Non-linear state space model

{
xt = f(xt−1, vt)
yt = h(xt ,wt)

}
⇔


x0 ∼ p(x0)

xt ∼ p(xt |xt−1)
yt ∼ p(yt |xt)


where

f,h ≡ state and observation functions;
vt ,wt ≡ state and observation noise;
p(x0) ≡ prior pdf of the state;
p(xt |xt−1) ≡ transition pdf of the state;
p(yt |xt) ≡ conditional pdf of the observation (likelihood of the
state).
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Stochastic filtering

Goal

Tracking the posterior distribution, p(xt |y1:t), which allows
computing the expectation of any function of interest, g, as

E [g(xt)] =

∫
g(xt)p(xt |y1:t)dxt

Using Bayes theorem, one can easily show

p(xt |y1:t) ∝ p(yt |xt)
∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1

There is uncertainty in the observations and/or the noise governing
the evolution of the system...that’s why we talk about stochastic
filteringa.

aKalman filter also falls within this category!!

Stochastic filtering
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Monte Carlo integration

Let X be a r.v. with pdf p(x) and consider the problem of
approximating

E [h(X )] =

∫
h(x)p(x)dx

for some integrable function h.

If we can draw N i.i.d. samples x (1), ..., x (N) from p(x) and the
variance of the r.v. Y = h(X ) is finite, then

lim
N→∞

1

N

N∑
n=1

h(X (n)) = E [h(X )]

almost surely (a.s.).

One possible approach
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Sampling

Unfortunately, in many problems it is impossible to draw samples
from p(x)...

yt = HHxt + wt

We want to estimate xt from yt , i.e., we aim at approximating
p(xt | yt)...but we cannot sample directly from the latter (how??)

Example

...but maybe p(x) can be evaluated up to a proportionality
constant2:

p(xt | yt) =
p(yt | xt)p(xt)

p(yt)
∝ p(yt | xt)p(xt)

2Say p(x) = Kf (x) where function f (x) is known, but constant K is not.
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Importance sampling

Assume the pdf of interest, p(x), (the target pdf) can be
evaluated up to a proportionality constant and

choose a pdf, q(x), known as proposal function such that

p(x) > 0⇒ q(x) > 0

define the weight function as

w(x) = c
p(x)

q(x)

where c is an arbitrary (possibly unknown) constant

then we can compute the expectation of any arbitrary function
h(x) with respect to p(x)...but using samples from q(x)!!
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Importance sampling: q(x)

x

p(x) q(x)

The support of q(x) must encompass that of p(x),

p(x) > 0⇒ q(x) > 0

Constraint

How to choose it

For the sake of efficiency, the proposal pdf should be as close as
possible to the target pdf.
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Importance sampling: procedure

...to approximate E [h(X )] with respect to p(x) using samples from
q(x)

1 Draw x(i) ∼ q(x) for i = 1, · · · ,N
2 Compute

w(x(i)) = c
p(x(i))

q(x(i))
, w∗(i) (unnormalized weight)

for i = 1, · · · ,N
3 Normalize the weights as

w (i) =
w∗(i)∑N
j=1 w

∗(j)

4 Approximate E [h(X )] as

E [h(X )] ≈
N∑
i=1

w (i)h(x(i)) (1)
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Importance sampling: interpretation

Using IS, we end up with a collection of pairs (sample,weight):{(
x(1),w (1)

)
,
(

x(2),w (2)
)
,
(

x(3),w (3)
)
, · · ·

}

The weight can be interpreted as the probability of the
corresponding sample

x

p(x)

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10)

weights

w (i)

p̂(x) =
∑N

i=1 δx(i)w (i)
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Importance sampling in dynamic systems

Can we apply IS to recursively estimate the state in a dynamic
system?

Recursive IS

Let us consider a dynamic model in state-space form specified by

x0 ∼ p(x0), xt ∼ p(xt |xt−1), yt ∼ p(yt |xt)

We already know how to approximate any distribution of
interest, and hence we could approximate

p(xt | y1:t), p(xt+1 | y1:t+1), p(xt+2 | y1:t+2), · · ·

one after the other, but they are related...

Goal

Build (using importance sampling) an approximation of
p(xt+1 | y1:t+1) using one from p(xt | y1:t).
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Importance sampling in dynamic systems

Assume we have an approximation of p(xt−1 | y1:t−1) given by

p̂N(xt−1 | y1:t−1) =
N∑
i=1

δ
x

(i)
t−1

w
(i)
t−1

p(xt | y1:t) =
p(yt | xt , y1:t−1)p(xt | y1:t−1)

p(yt | y1:t−1)

∝ p(yt | xt , y1:t−1)p(xt | y1:t−1)

= p(yt | xt)
∫

p(xt | xt−1, y1:t−1)p(xt−1 | y1:t−1)dxt−1

≈ p(yt | xt)
∫

p(xt | xt−1, y1:t−1)p̂N(xt−1 | y1:t−1)dxt−1

= p(yt | xt)
N∑
i=1

p(xt | x(i)
t−1, y1:t−1)w

(i)
t−1
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Particle filtering

Initialization

samples are drawn from the prior,

x
(i)
0 ∼ p(x0), i = 1, · · · ,N,

all the weights are set to the same value

w
(0)
i = 1/N, i = 1, · · · ,N

Recursion at time t

draw samples, x
(1)
t , x

(2)
t , · · · , from the selected proposal,

x
(i)
t ∼ q(xt | y1:t)

compute the weights

w
(i)
t ∝

p(x
(i)
t | y1:t)

q(x
(i)
t | y1:t)

=
p(yt | x

(i)
t )
∑N

i=1 p(x
(i)
t | x

(i)
t−1, y1:t−1)w

(i)
t−1

q(x
(i)
t | y1:t)

This scheme is called particle filtering or Sequential Importance
Sampling (SIS). Once samples are available, Equation (1) can be
used to approximate any integral with respect to p(xt | y1:t).
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Bootstrap filter

If we choose as proposal function

q(xt | y1:t) =
N∑
i=1

p(xt | x(i)
t−1, y1:t−1)w

(i)
t−1

computing the weights is easy

w
(i)
t ∝

p(x
(i)
t | y1:t)

q(x
(i)
t | y1:t)

=
p(yt | x

(i)
t )

(((((((((((((((∑N
i=1 p(x

(i)
t | x

(i)
t−1, y1:t−1)w

(i)
t−1

(((((((((((((((∑N
i=1 p(x

(i)
t | x

(i)
t−1, y1:t−1)w

(i)
t−1

= p(yt | x
(i)
t )

The resulting algorithm is the bootstrap filter, considered the
first particle filter
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first particle filter
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Bootstrap filter: the proposal function

Drawing samples from the proposal

q(xt | y1:t) =
N∑
i=1

p(xt | x(i)
t−1, y1:t−1)w

(i)
t−1

can be seen as a two step procedure:

resampling the previous approximation,{(
x

(1)
t−1,w

(1)
t−1

)
,
(

x
(2)
t−1,w

(2)
t−1

)
,
(

x
(3)
t−1,w

(3)
t−1

)
, · · ·

}
to get x

(j1)
t−1, x

(j2)
t−1, · · · , x

(jt)
t−1 with j1, j2, · · · , jt ∈ {1, · · · ,N}

propagating each resampled particle using the transition pdf,
p(xt |xt−1), as

x
(i)
t ∼ p(xt |x(ji )

t−1), i = 1, · · · ,N
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Resampling

p(x)

x̃(1) x̃(2) x̃(3) x̃(4) x̃(5) x̃(6) x̃(7) x̃(8) x̃(9) x̃(10)

x (8)

x (5)
x (6)

x (7)

x (9)

x (2)

x (4)

x (3)

x (1)
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Bootstrap filter: implementation

Initialization

sample x
(i)
0 , i = 1, · · · ,N from the prior p(x0)

Recursion given p̂N(xt−1 | y1:t−1) =
∑N

i=1 w
(i)δ

x̃
(i)
t−1

,

1 resampling: let x
(i)
t−1 = x̃

(j)
t−1 with probability

w (j), i = 1, · · · ,N, j ∈ {1, · · · ,N}.
2 propagation (sampling)

x̃
(i)
t ∼ p(xt |x(i)

t−1), i = 1, · · · ,N

3 weight computation...

w∗(i) = p(yt | x̃
(i)
t ), i = 1, · · · ,N

...and normalization

w (i) =
w∗(i)∑N
j=1 w

∗(j)
, i = 1, · · · ,N
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Bootstrap filter: implementation

Initialization

sample x
(i)
0 , i = 1, · · · ,N from the prior p(x0)

Recursion given p̂N(xt−1 | y1:t−1) = 1
N

∑N
i=1 δx

(i)
t−1

,

1 propagation (sampling)

x̃
(i)
t ∼ p(xt |x(i)

t−1), i = 1, · · · ,N

2 weight computation...

w∗(i) = p(yt | x̃
(i)
t ), i = 1, · · · ,N

...and normalization

w (i) =
w∗(i)∑N
j=1 w

∗(j)
, i = 1, · · · ,N

3 resampling: let x
(i)
t = x̃

(j)
t with probability

w (j), i = 1, · · · ,N, j ∈ {1, · · · ,N}.
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Bootstrap filter: overview
1. Initialization

x
(i)
0 ∼ p(x0) for i = 1, · · · ,N

2. Recursive step: starting from
samples at time instant t − 1 x

(1)
t−1 x

(2)
t−1 x

(N)
t−1

2.1. Samples propagation

x̃
(i)
t ∼ p

(
xt | x(i)

t−1

)
x̃

(1)
t x̃

(2)
t x̃

(N)
t

2.2. Weights computation and normalization

w (i) ∝ p
(

yt | x̃(i)
t

)
, i = 1, · · · ,N w (1) w (2) w (N)

2.3. Resampling

x
(i)
t = x̃

(j)
t , i = 1, · · · ,N

with probability w (j), j ∈ {1, · · · ,N}

samples at time t x
(1)
t

x
(2)
t

x
(N)
t
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Bootstrap filter: epilogue

In the above implementation, at the end of every iteration we have
samples

x
(1)
t , x

(2)
t , · · · x(N)

t

that make up an approximation of

p(xt | y1:t),

but the initial goal was to approximate the expectation of some
(known) function of interest, g, with respect to p(xt | y1:t), i.e.,

E [g(xt)] =

∫
g(xt)p(xt |y1:t)dxt .

We simply use the samples to compute a Monte Carlo approximation ,

E [g(xt)] ≈ 1

N

N∑
n=1

g(x
(n)
t )
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