Dynamic syster

Kalman filter

Kalman filter with control term

Sensors networks Estimation

Manuel A. Vázquez Joaquín Míguez Jose Miguel Leiva

February 4, 2024

2 Dynamic system

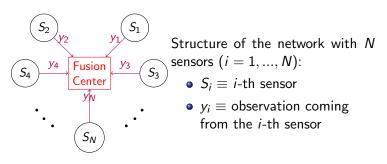
3 Kalman filter

Dynamic system

Kalman filter

Kalman filter with control term

Centralized estimation network



The FC must use the collection of observations to estimate an $M \times 1$ vector, **x**.

Classic estimation

Estimation of **x** given the collection of data $\mathbf{y} = \{y_1, ..., y_N\}$ is tantamount to a *classic* estimation problem. There are several possible estimators:

Dynamic system

Kalman filter

Classic estimation

Estimation of **x** given the collection of data $\mathbf{y} = \{y_1, ..., y_N\}$ is tantamount to a *classic* estimation problem. There are several possible estimators:

• Maximum likelihood (ML)

$$\hat{\mathbf{x}}^{ML} = rg\max_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}).$$

Kalman filter

Classic estimation

Estimation of **x** given the collection of data $\mathbf{y} = \{y_1, ..., y_N\}$ is tantamount to a *classic* estimation problem. There are several possible estimators:

• Maximum likelihood (ML)

$$\hat{\mathbf{x}}^{ML} = rg\max_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}).$$

• Maximum a posteriori (MAP)

$$\hat{\mathbf{x}}^{MAP} = \arg \max_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}).$$

Dynamic system

Kalman filter

Classic estimation

Estimation of **x** given the collection of data $\mathbf{y} = \{y_1, ..., y_N\}$ is tantamount to a *classic* estimation problem. There are several possible estimators:

• Maximum likelihood (ML)

$$\hat{\mathbf{x}}^{ML} = rg\max_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}).$$

• Maximum a posteriori (MAP)

$$\hat{\mathbf{x}}^{MAP} = \arg \max_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}).$$

• Minimum Mean Square Error (MMSE)

$$\begin{split} \hat{\mathbf{x}}^{MMSE} &= \arg\min_{\hat{\mathbf{x}}} \mathbb{E}\left[\|\mathbf{x} - \hat{\mathbf{x}}\|^2\right] \\ &= \mathbb{E}\left[\mathbf{x}|\mathbf{y}\right] = \int \mathbf{x} \rho(\mathbf{x}|\mathbf{y}) d\mathbf{x}. \end{split}$$

00	Oynamic system ●000	Colococococococococococococococococococo	Kalman filter with control term
Dynami	c model		
A more	e interesting problem.		

What if the variable of interest changes with time?

 $\mathbf{x}
ightarrow \mathbf{x}_t$

with t being a discrete-time index. Since **x** was a random variable, \mathbf{x}_t is a random process.

What if the variable of interest changes with time?

$$\mathbf{x} \rightarrow \mathbf{x}_t$$

with t being a discrete-time index. Since **x** was a random variable, \mathbf{x}_t is a random process.

Goal

We want to **track** the evolution of **x** with time.

What if the variable of interest changes with time?

$$\mathbf{x} \rightarrow \mathbf{x}_t$$

with t being a discrete-time index. Since **x** was a random variable, \mathbf{x}_t is a random process.

Goal

We want to **track** the evolution of **x** with time.

Then, we need two equations

What if the variable of interest changes with time?

$$\mathbf{x}
ightarrow \mathbf{x}_t$$

with t being a discrete-time index. Since **x** was a random variable, \mathbf{x}_t is a random process.

Goal

We want to **track** the evolution of **x** with time.

Then, we need two equations

• a state equation modeling the evolution of the variable of interest

What if the variable of interest changes with time?

$$\mathbf{x}
ightarrow \mathbf{x}_t$$

with t being a discrete-time index. Since **x** was a random variable, \mathbf{x}_t is a random process.

Goal

We want to **track** the evolution of **x** with time.

Then, we need two equations

- a state equation modeling the evolution of the variable of interest
- a observation equation modeling the connection between the variable of interest and the observations
- Let us start by considering an easy-to-handle model...

Linear Gaussian model

• Process **x**_t evolves according to a linear Gaussian model

$$\mathbf{x}_t = \mathbf{F}\mathbf{x}_{t-1} + \mathbf{v}_t$$
 (state equation)

where **F** is a $M \times M$ matrix, and \mathbf{v}_t is a $M \times 1$ Gaussian random vector with mean **0** and covariance **Q**, being *M* the number of elements in \mathbf{x}_t .

• Process **x**_t evolves according to a linear Gaussian model

$$\mathbf{x}_t = \mathbf{F}\mathbf{x}_{t-1} + \mathbf{v}_t$$
 (state equation)

where **F** is a $M \times M$ matrix, and \mathbf{v}_t is a $M \times 1$ Gaussian random vector with mean **0** and covariance **Q**, being *M* the number of elements in \mathbf{x}_t .

Connection between the variable of interest x_t and the observations is given by

 $\mathbf{y}_t = \mathbf{H}\mathbf{x}_t + \mathbf{w}_t$ (observation equation)

where **H** is a $N \times M$ matrix and \mathbf{w}_t is a $N \times 1$ Gaussian random vector with mean **0** and covariance **R**.

• Process \mathbf{x}_t evolves according to a linear Gaussian model

$$\mathbf{x}_t = \mathbf{F}\mathbf{x}_{t-1} + \mathbf{v}_t$$
 (state equation)

where **F** is a $M \times M$ matrix, and \mathbf{v}_t is a $M \times 1$ Gaussian random vector with mean **0** and covariance **Q**, being *M* the number of elements in \mathbf{x}_t .

Connection between the variable of interest x_t and the observations is given by

 $\mathbf{y}_t = \mathbf{H}\mathbf{x}_t + \mathbf{w}_t$ (observation equation)

where **H** is a $N \times M$ matrix and \mathbf{w}_t is a $N \times 1$ Gaussian random vector with mean **0** and covariance **R**.

gObservations...

...vector, \mathbf{y}_t , collects the measurements from all the sensors

Goal

Localization and tracking of an object moving with a known constant velocity \mathbf{c} .

Goal

Localization and tracking of an object moving with a known constant velocity \mathbf{c} .

 The position of the target, x_t (here representing the state of the system), evolves according to

$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{c}T + \mathbf{v}_t,$$

where T is the *sampling period*, i.e., the time elapsed between two consecutive observations.

Goal

Localization and tracking of an object moving with a known constant velocity \mathbf{c} .

 The position of the target, x_t (here representing the state of the system), evolves according to

$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{c}T + \mathbf{v}_t,$$

where T is the *sampling period*, i.e., the time elapsed between two consecutive observations.

• The position is observed directly:

$$\mathbf{y}_t = \mathbf{x}_t + \mathbf{w}_t$$

Goal

Localization and tracking of an object moving with constant *unknown* velocity.

Goal

Localization and tracking of an object moving with constant *unknown* velocity.

In order to estimate the velocity, it is included in the state of the system

$$\mathbf{x}_t' = \begin{bmatrix} \mathbf{x}_t \\ \mathbf{c} \end{bmatrix}$$

Goal

Localization and tracking of an object moving with constant *unknown* velocity.

In order to estimate the velocity, it is included in the state of the system

$$\mathbf{x}_t' = \begin{bmatrix} \mathbf{x}_t \\ \mathbf{c} \end{bmatrix}$$

• The state equation is now

$$\mathbf{x}_{t}' = \mathbf{F}\mathbf{x}_{t-1}' + \begin{bmatrix} \mathbf{v}_{t} \\ \mathbf{0} \end{bmatrix}$$
, with $\mathbf{F} = \begin{bmatrix} 1 & 0 & T & 0 \\ 0 & 1 & 0 & T \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Goal

Localization and tracking of an object moving with constant *unknown* velocity.

In order to estimate the velocity, it is included in the state of the system

$$\mathbf{x}_t' = \begin{bmatrix} \mathbf{x}_t \\ \mathbf{c} \end{bmatrix}$$

• The state equation is now

$$\mathbf{x}'_{t} = \mathbf{F}\mathbf{x}'_{t-1} + \begin{bmatrix} \mathbf{v}_{t} \\ \mathbf{0} \end{bmatrix}, \text{ with } \mathbf{F} = \begin{bmatrix} 1 & 0 & T & 0 \\ 0 & 1 & 0 & T \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

• and the observation equation

$$\mathbf{y}_t = \mathbf{H}\mathbf{x}_t' + \mathbf{w}_t$$
, with $\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

2 Dynamic system

What is the Kalman filter?

It is a recursive method for computing *posterior* probability distributions in linear Gaussian dynamic systems.

It is a recursive method for computing *posterior* probability distributions in linear Gaussian dynamic systems.

• recursive: at every time instant it yields an estimate based on the one from the previous time instant

It is a recursive method for computing *posterior* probability distributions in linear Gaussian dynamic systems.

- recursive: at every time instant it yields an estimate based on the one from the previous time instant
- probability distributions: it does not (only) give us an estimate of the parameter of interest, but rather its full distribution (determined by the mean and the covariance matrix)

It is a recursive method for computing *posterior* probability distributions in linear Gaussian dynamic systems.

- recursive: at every time instant it yields an estimate based on the one from the previous time instant
- probability distributions: it does not (only) give us an estimate of the parameter of interest, but rather its full distribution (determined by the mean and the covariance matrix)
- dynamic systems: systems that model a time-varying magnitude

It is a recursive method for computing *posterior* probability

distributions in linear Gaussian dynamic systems.

- recursive: at every time instant it yields an estimate based on the one from the previous time instant
- probability distributions: it does not (only) give us an estimate of the parameter of interest, but rather its full distribution (determined by the mean and the covariance matrix)
- dynamic systems: systems that model a time-varying magnitude
- linear: the equations defining the system are linear with respect to the variable of interest

What is the Kalman filter?

It is a recursive method for computing *posterior* probability distributions in linear Gaussian dynamic systems.

- recursive: at every time instant it yields an estimate based on the one from the previous time instant
- probability distributions: it does not (only) give us an estimate of the parameter of interest, but rather its full distribution (determined by the mean and the covariance matrix)
- dynamic systems: systems that model a time-varying magnitude
- linear: the equations defining the system are linear with respect to the variable of interest
- Gaussian: the noise affecting the above equations is Gaussian.

Dynamic system in state-space form

$$\mathbf{x}_t = \mathbf{F}_{t-1}\mathbf{x}_{t-1} + \mathbf{v}_t \quad \longleftarrow \quad \begin{array}{c} ext{state} \\ ext{equation} \end{array}$$

Kalman filter 0●00000

Kalman filter with control term

Dynamic system in state-space form

$$\mathbf{x}_{t} = \mathbf{F}_{t-1}\mathbf{x}_{t-1} + \mathbf{v}_{t} \quad \longleftarrow \quad \begin{array}{c} \text{state} \\ \text{equation} \end{array}$$
$$\mathbf{y}_{t} = \mathbf{H}_{t}\mathbf{x}_{t} + \mathbf{w}_{t} \quad \longleftarrow \quad \begin{array}{c} \text{observation} \\ \text{equation} \end{array}$$

Kalman filter 0●00000

Kalman filter with control term

Dynamic system in state-space form

$$\begin{aligned} \mathbf{x}_{t} &= \mathbf{F}_{t-1} \mathbf{x}_{t-1} + \mathbf{v}_{t} & \longleftarrow \begin{array}{c} \text{state} \\ \text{equation} \end{array} \\ \mathbf{y}_{t} &= \mathbf{H}_{t} \mathbf{x}_{t} + \mathbf{w}_{t} & \longleftarrow \begin{array}{c} \text{observation} \\ \text{equation} \end{array} \right\} \\ \text{dynamic system in} \\ \text{state-space form} \end{aligned}$$

Kalman filter

Kalman filter with control term $_{\rm OOO}$

Dynamic system in state-space form

$$\begin{aligned} \mathbf{x}_{t} &= \mathbf{F}_{t-1} \mathbf{x}_{t-1} + \mathbf{v}_{t} & \longleftarrow \begin{array}{c} \text{state} \\ \text{equation} \end{array} \\ \mathbf{y}_{t} &= \mathbf{H}_{t} \mathbf{x}_{t} + \mathbf{w}_{t} & \longleftarrow \begin{array}{c} \text{observation} \\ \text{equation} \end{array} \right\} dynamic system in \\ \text{state-space form} \end{aligned}$$

Goal

Recursively estimate the state of the system \mathbf{x}_t given the observations, \mathbf{y}_t

The time index is discrete, i.e, $t = 0, 1, \cdots$

Overview	Dynamic system	Kalman filter	Kalman filter with control term
00	0000	00●0000	
Notation			

$$\mathbf{x}_t = \mathbf{F}_{t-1}\mathbf{x}_{t-1} + \mathbf{v}_t$$

- **x**_t is the (system) state vector at time t
- **F**_t is the state transition matrix: it determines the evolution of the state of the system
- $\mathbf{v}_t \sim \mathcal{N}\left(\mathbf{v}_t | \mathbf{0}, \mathbf{Q}_t\right)$ is the state (or process) noise
 - **Q**_t is the covariance matrix for the state noise (it might be time-varying)

Overview	Dynamic system	Kalman filter	Kalman filter with control term
00	0000	00●0000	
Notation			

$$\mathbf{x}_t = \mathbf{F}_{t-1}\mathbf{x}_{t-1} + \mathbf{v}_t$$

- **x**_t is the (system) state vector at time t
- **F**_t is the state transition matrix: it determines the evolution of the state of the system
- $\mathbf{v}_t \sim \mathcal{N}\left(\mathbf{v}_t | \mathbf{0}, \mathbf{Q}_t
 ight)$ is the state (or process) noise
 - **Q**_t is the covariance matrix for the state noise (it might be time-varying)

$$\mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{w}_t$$

- **y**_t is the observations vector
- **H**_t is the observation matrix: it connects the observations with the (unknown) state
- $\mathbf{w}_t \sim \mathcal{N}\left(\mathbf{w}_t | \mathbf{0}, \mathbf{R}_t
 ight)$ is the observation noise
 - **R**_t is the covariance matrix of the observation noise (it might be time-varying)

The prior (initial) distribution of the state is Gaussian, i.e.,

$$p(\mathbf{x}_0) \sim \mathcal{N}\left(\mathbf{x}_0 | \hat{\mathbf{x}}_{0|0}, \mathbf{P}_{0|0}
ight)$$

with known

- $\hat{\boldsymbol{x}}_{0|0}:$ the mean for the distribution of the state at time 0
- $\mathbf{P}_{0|0}$: covariance matrix for the distr. of the state at time 0

The prior (initial) distribution of the state is Gaussian, i.e.,

$$p(\mathbf{x}_0) \sim \mathcal{N}\left(\mathbf{x}_0 | \hat{\mathbf{x}}_{0|0}, \mathbf{P}_{0|0}
ight)$$

with **known**

- $\hat{\boldsymbol{x}}_{0|0}:$ the mean for the distribution of the state at time 0
- $\mathbf{P}_{0|0}$: covariance matrix for the distr. of the state at time 0

8 Notation

- $\hat{\mathbf{x}}_{a|b} \equiv$ mean *estimated* at time *a* using the observations up to time *b*
- P_{a|b} = covariance matrix *estimated* at time a using the observations up to time b

The prior (initial) distribution of the state is Gaussian, i.e.,

$$p(\mathbf{x}_{0}) \sim \mathcal{N}\left(\mathbf{x}_{0} | \hat{\mathbf{x}}_{0|0}, \mathbf{P}_{0|0}
ight)$$

with **known**

- $\hat{\boldsymbol{x}}_{0|0}:$ the mean for the distribution of the state at time 0
- $\mathbf{P}_{0|0}$: covariance matrix for the distr. of the state at time 0

8 Notation

- $\hat{\mathbf{x}}_{a|b} \equiv$ mean *estimated* at time *a* using the observations up to time *b*
- P_{a|b} ≡ covariance matrix *estimated* at time a using the observations up to time b

🐞 In the beginning

At time 0 we have no observations available...but the notation is still convenient.

Overview	Dynamic system	Kalman filter	Kalman filter with control term
00	0000	0000●00	
Filtering:	recursion		

If the initial hypothesis holds then, for $t=1,2,\cdots$

If the initial hypothesis holds then, for $t=1,2,\cdots$

$$p(\mathbf{x}_t \mid \mathbf{y}_{1:t-1}) \sim \mathcal{N}\left(\mathbf{x}_t | \hat{\mathbf{x}}_{t|t-1}, \mathbf{P}_{t|t-1}\right) \quad \longleftarrow \quad \begin{array}{c} \text{predictive} \\ \text{pdf} \end{array}$$

Overview Dynamic system Kalman filter Kalman filter ooo ooo ooo ooo

If the initial hypothesis holds then, for $t=1,2,\cdots$

$$\begin{split} \rho(\mathbf{x}_t \mid \mathbf{y}_{1:t-1}) &\sim \mathcal{N}\left(\mathbf{x}_t | \hat{\mathbf{x}}_{t|t-1}, \mathbf{P}_{t|t-1}\right) &\longleftarrow \begin{array}{c} \text{predictive} \\ \text{pdf} \\ \\ \rho(\mathbf{x}_t \mid \mathbf{y}_{1:t}) &\sim \mathcal{N}\left(\mathbf{x}_t | \hat{\mathbf{x}}_{t|t}, \mathbf{P}_{t|t}\right) &\longleftarrow \begin{array}{c} \text{filtered pdf} \\ \end{split}$$

...that is, both pdf's are Gaussian if the initial distribution is Gaussian, and the **Kalman filter** yields both its means and covariances in a two-steps process

Notation $y_{i:j} \equiv \{y_i, y_{i+1}, \cdots, y_j\}$

Solution

Predictive step

$$\begin{aligned} \hat{\mathbf{x}}_{t|t-1} &= \mathbf{F}_{t-1} \hat{\mathbf{x}}_{t-1|t-1} & \longleftarrow \text{ predictive mean} \\ \mathbf{P}_{t|t-1} &= \mathbf{Q}_{t-1} + \mathbf{F}_{t-1} \mathbf{P}_{t-1|t-1} \mathbf{F}_{t-1}^H & \longleftarrow \text{ predictive covariance} \end{aligned} \right\} \text{ associated with the predictive pdf}$$

Solution

Predictive step

$$\begin{aligned} \hat{\mathbf{x}}_{t|t-1} &= \mathbf{F}_{t-1} \hat{\mathbf{x}}_{t-1|t-1} & \longleftarrow \text{ predictive mean} \\ \mathbf{P}_{t|t-1} &= \mathbf{Q}_{t-1} + \mathbf{F}_{t-1} \mathbf{P}_{t-1|t-1} \mathbf{F}_{t-1}^H & \longleftarrow \text{ predictive covariance} \end{aligned} \right\} \text{ associated with the predictive pdf}$$

Update step

$$\begin{split} & \mathbf{K}_{t} = \mathbf{P}_{t|t-1} \mathbf{H}_{t}^{H} \left(\mathbf{H}_{t} \mathbf{P}_{t|t-1} \mathbf{H}_{t}^{H} + \mathbf{R}_{t} \right)^{-1} \quad \longleftarrow \quad \text{Kalman gain} \\ & \hat{\mathbf{x}}_{t|t} = \hat{\mathbf{x}}_{t|t-1} + \mathbf{K}_{t} \left(\mathbf{y}_{t} - \mathbf{H}_{t} \hat{\mathbf{x}}_{t|t-1} \right) \quad \longleftarrow \quad \text{filtered mean} \\ & \mathbf{P}_{t|t} = \left(\mathbf{I} - \mathbf{K}_{t} \mathbf{H}_{t} \right) \mathbf{P}_{t|t-1} \qquad \longleftarrow \quad \text{filtered covariance} \end{split} \right\}^{\text{associated with}}$$

Remarks

• In order to apply the KF

 $^{^1 \}hdots$ is Gaussian distribution is fully specified by its means vector and covariance matrix

Remarks

- In order to apply the KF
 - the system must be linear

 $^{^1 \}hdots$ is Gaussian distribution is fully specified by its means vector and covariance matrix

control term

Remarks

- In order to apply the KF
 - the system must be linear
 - the noise must be Gaussian

 $^{^1 \}hdots$ is Gaussian distribution is fully specified by its means vector and covariance matrix

Overview	Dynamic system	Kalman filter	Kalman filter with control term
00	0000	000000●	
Remarks			

- In order to apply the KF
 - the system must be linear
 - the noise must be Gaussian
 - the initial distribution of the state must be Gaussian

 $^{^1 \}dots {\rm since}$ a Gaussian distribution is fully specified by its means vector and covariance matrix

Overview	Dynamic system	Kalman filter	Kalman filter with control term
00	0000	000000●	
Remarks			

- In order to apply the KF
 - the system must be linear
 - the noise must be Gaussian
 - the initial distribution of the state must be Gaussian
- KF outputs the a probability distribution¹, which contains all the available information about the parameter of interest

🖉 In our case...

 $p(\mathbf{x}_t | \mathbf{y}_{1:t})$ contains all the available information at time t about \mathbf{x}_t , and from it we can compute the mean, median, mode...

 $^{^1\}hdots$ a Gaussian distribution is fully specified by its means vector and covariance matrix

Overview	Dynamic system	Kalman filter	Kalman filter with control term
00	0000	000000●	
Remarks			

- In order to apply the KF
 - the system must be linear
 - the noise must be Gaussian
 - the initial distribution of the state must be Gaussian
- KF outputs the a probability distribution¹, which contains all the available information about the parameter of interest

In our case...

 $p(\mathbf{x}_t | \mathbf{y}_{1:t})$ contains all the available information at time t about \mathbf{x}_t , and from it we can compute the mean, median, mode...

• $\hat{\mathbf{x}}_{t|t} \equiv \mathsf{MMSE}$ estimate of the state at time t

 $^{^1 \}hdots$ a Gaussian distribution is fully specified by its means vector and covariance matrix

Overview	Dynamic system	Kalman filter	Kalman filter with control term
00	0000	000000●	
Remarks			

- In order to apply the KF
 - the system must be linear
 - the noise must be Gaussian
 - the initial distribution of the state must be Gaussian
- KF outputs the a probability distribution¹, which contains all the available information about the parameter of interest

🖉 In our case...

 $p(\mathbf{x}_t | \mathbf{y}_{1:t})$ contains all the available information at time t about \mathbf{x}_t , and from it we can compute the mean, median, mode...

• $\hat{\mathbf{x}}_{t|t} \equiv \mathsf{MMSE}$ estimate of the state at time t

• Tr $\{\mathbf{P}_{t|t}\} \equiv$ minimum error (square error at $\hat{\mathbf{x}}_{t|t}$)

 $^1 \hdots$ a Gaussian distribution is fully specified by its means vector and covariance matrix

2 Dynamic system

3 Kalman filter

Overview	Dynamic system	Kalman filter	Kalman filter with control term
00	0000	0000000	●00
~			

$$\begin{aligned} \mathbf{x}_t &= \mathbf{F}_{t-1} \mathbf{x}_{t-1} + \mathbf{B}_t \mathbf{u}_t + \mathbf{v}_{t-1} &\longleftarrow \begin{array}{c} \text{state} \\ \text{equation} \end{array} \\ \mathbf{y}_t &= \mathbf{H}_t \mathbf{x}_t + \mathbf{w}_t &\longleftarrow \begin{array}{c} \text{observation} \\ \text{equation} \end{array} \end{aligned}$$

The control term, $\mathbf{B}_t \mathbf{u}_t$, with

- **B**_t is the control-input, and
- **u**_t is the control vector

is **known** (at every time instant t) and meant for modifying the (unknown) state.

What is the control term good for?

• ...sometimes we can have some impact (control) over whatever we aim at estimating

axample (

Problem: estimating the trajectory of a drone we are handling ourselves

²...so it should be in the corresponding equation!!

What is the control term good for?

• ...sometimes we can have some impact (control) over whatever we aim at estimating

axample 🖉

Problem: estimating the trajectory of a drone we are handling ourselves

• ...from a mathematical standpoint, it is useful to model *affine* functions

²...so it should be in the corresponding equation!!

What is the control term good for?

• ...sometimes we can have some impact (control) over whatever we aim at estimating

🖉 example

Problem: estimating the trajectory of a drone we are handling ourselves

• ...from a mathematical standpoint, it is useful to model *affine* functions

The control term is something that affects the state², but since it is known there is no need to estimate it.

²...so it should be in the corresponding equation!!

Solution

Predictive step

$$\hat{\mathbf{x}}_{t|t-1} = \mathbf{F}_{t-1} \hat{\mathbf{x}}_{t-1|t-1} + \mathbf{B}_t \mathbf{u}_t \qquad \longleftarrow \text{ predictive mean} \\ \mathbf{P}_{t|t-1} = \mathbf{Q}_{t-1} + \mathbf{F}_{t-1} \mathbf{P}_{t-1|t-1} \mathbf{F}_{t-1}^H \qquad \longleftarrow \text{ predictive covariance}$$
 associated with the predictive pdf

Update step

$$\begin{split} \mathbf{K}_{t} &= \mathbf{P}_{t|t-1} \mathbf{H}_{t}^{H} \left(\mathbf{H}_{t} \mathbf{P}_{t|t-1} \mathbf{H}_{t}^{H} + \mathbf{R}_{t} \right)^{-1} \quad \longleftarrow \quad \text{Kalman gain} \\ \hat{\mathbf{x}}_{t|t} &= \hat{\mathbf{x}}_{t|t-1} + \mathbf{K}_{t} \left(\mathbf{y}_{t} - \mathbf{H}_{t} \hat{\mathbf{x}}_{t|t-1} \right) \quad \longleftarrow \quad \text{filtered mean} \\ \mathbf{P}_{t|t} &= \left(\mathbf{I} - \mathbf{K}_{t} \mathbf{H}_{t} \right) \mathbf{P}_{t|t-1} \qquad \longleftarrow \quad \text{filtered covariance} \end{split} \right\}^{\text{associated with}}$$