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The binary erasure channel (BEC)
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C = 1− ε

The model is very simple, but even so...

quite surprisingly, most properties and statements that we
encounter in our investigation of LDPC codes over the
BEC hold in much greater generality (R. Urbanke and T.
Richardson, Modern Coding Theory) and, moreover,

erasure correcting codes are used in the link layer of some
communications standards.
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BEC: practical considerations
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Uncoded transmission

Channel bit error probability ≡ ε

Transmission of encoded bits

b︸︷︷︸
k information
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→ c︸︷︷︸
n encoded

bits

→ r︸︷︷︸
n channel

observations
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decoded
codeword

The rate of the code is still R = k
n



Binary Erasure Channel (BEC) Classical channel coding approach Modern channel coding Low-density Parity-Check codes

BEC: practical considerations

0

1

0

?

1

1− ε

ε

ε

1− ε

c r

Uncoded transmission

Channel bit error probability ≡ ε

Transmission of encoded bits

b︸︷︷︸
k information

bits

→ c︸︷︷︸
n encoded

bits

→ r︸︷︷︸
n channel

observations
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Channel coding theorem

We can attain a vanishing (codeword) error probability,

P(ĉ 6= c|r)→ 0,

when n→∞ if the code rate is below the capacity, i.e.,

R < C .

Using n→∞ is a waste of resources (time, energy)

You don’t want that...

Goal

...to design feasible encoding and decoding schemes that allow us
to operate close to channel capacity.
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P(ĉ 6= c|r)→ 0,

when n→∞ if the code rate is below the capacity, i.e.,

R < C .

Using n→∞ is a waste of resources (time, energy)

You don’t want that...

Goal

...to design feasible encoding and decoding schemes that allow us
to operate close to channel capacity.



Binary Erasure Channel (BEC) Classical channel coding approach Modern channel coding Low-density Parity-Check codes

Index

1 Binary Erasure Channel (BEC)

2 Classical channel coding approach

3 Modern channel coding

4 Low-density Parity-Check codes



Binary Erasure Channel (BEC) Classical channel coding approach Modern channel coding Low-density Parity-Check codes

Linear block codes

Generator matrix: c = bG where b ∈ {0, 1}k .

Parity check matrix: cHT = 0 ∀c ∈ C.
C is the set of all codewords (codebook)

Each row of the parity check matrix yields a linear constraint
on the coded bits.

For a Hamming (7, 4) code

G =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 , H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


Therefore...

c1 ⊕ c3 ⊕ c5 ⊕ c7 = 0

c2 ⊕ c3 ⊕ c6 ⊕ c7 = 0

c4 ⊕ c5 ⊕ c6 ⊕ c7 = 0
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Transmission over BEC
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Linear block code (n, k) with
matrices G and H.

Codeword c is sent.

Vector r is observed.

Some bits are erased, others are not:

E is the set containing the indexes of the erased bits

R is the set containing the indexes of the received bits.

E ∪ R = {1, . . . , n}.

Thus, for the BEC

r(E) =?, r(R) = c(R)
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Decoding over BEC: example

Hamming (7, 4) code.

c =
[

1 1 1 0 0 0 0
]

is sent.

r =
[

1 ? 1 0 ? ? 0
]

is received.

E = {2, 5, 6} and R = {1, 3, 4, 7}.

Thus, the system of equations can be simplified:

c1 ⊕ c3 ⊕ c5 ⊕ c7 = 0

c2 ⊕ c3 ⊕ c6 ⊕ c7 = 0

c4 ⊕ c5 ⊕ c6 ⊕ c7 = 0



→
1⊕ 1⊕ c5 ⊕ 0 = 0

c2 ⊕ 1⊕ c6 ⊕ 0 = 0

0⊕ c5 ⊕ c6 ⊕ 0 = 0

 →
c5 = 0

c2 ⊕ c6 = 1

c5 ⊕ c6 = 0


By solving the system of binary equations we get a unique

solution ĉ = [1110000] = c.
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Decoding over BEC: general statement

Linear block code (n, k) with matrices G and H.

Codeword c is sent.

Vector r is observed.

HE is the submatrix of H obtained by picking only those
columns whose indexes are in E (and, analogously, HR is...).

Optimal maximum a posteriori decoding

Find c(E) by solving the following system of equations:

c(E)HT
E = c(R)HT

R

In the former example:

[
c2 c5 c6

]  0 1 0
1 0 1
0 1 1

> =
[
0 1 0

]



Binary Erasure Channel (BEC) Classical channel coding approach Modern channel coding Low-density Parity-Check codes

Decoding over BEC: general statement

Linear block code (n, k) with matrices G and H.

Codeword c is sent.

Vector r is observed.

HE is the submatrix of H obtained by picking only those
columns whose indexes are in E (and, analogously, HR is...).

Optimal maximum a posteriori decoding

Find c(E) by solving the following system of equations:

c(E)HT
E = c(R)HT

R

In the former example:

[
c2 c5 c6

]  0 1 0
1 0 1
0 1 1

> =
[
0 1 0

]



Binary Erasure Channel (BEC) Classical channel coding approach Modern channel coding Low-density Parity-Check codes

Decoding over BEC: general statement

Linear block code (n, k) with matrices G and H.

Codeword c is sent.

Vector r is observed.

HE is the submatrix of H obtained by picking only those
columns whose indexes are in E (and, analogously, HR is...).

Optimal maximum a posteriori decoding

Find c(E) by solving the following system of equations:

c(E)HT
E = c(R)HT

R

In the former example:

[
c2 c5 c6

]  0 1 0
1 0 1
0 1 1

> =
[
0 1 0

]



Binary Erasure Channel (BEC) Classical channel coding approach Modern channel coding Low-density Parity-Check codes

System of linear equations for MAP decoding

cH> =
[
c1 c2 c3 c4 c5 c6 c7

] h1...
h7

 = 0

= c1h1 + c2h2 + c3h3 + c4h4 + c5h5 + c6h6 + c7h7 = 0

= c2h2 + c5h5 + c6h6 + c1h1 + c3h3 + c4h4 + c7h7 = 0

=
[
c2 c5 c6

] h2h5
h6


︸ ︷︷ ︸
HET

+
[
c1 c3 c4 c7

] 
h1
h3
h4
h7


︸ ︷︷ ︸
HT

R

= 0

Hence, [
c2 c5 c6

]
HE

T =
[
c1 c3 c4 c7

]
HT
R

hj ≡ j-th row of matrix H> = j-th column of matrix H
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Optimal MAP decoding (classical approach)

When solving the system of linear equations, c(E)HT
E = c(R)HT

R
for c(E), there are two possible outcomes:

the system has multiple solutions → all of them are equally
likely, and we declare a decoding failure.

the system has an unique solution → ĉ = c, and no decoding
error is possible.[

c(E)
]

=
[

c(E)
]

=

Gauss
elimination

O
(
n3

)
O (n)

c(E)

Computational complexity:

Gaussian elimination requires O
(
n3
)

operations
After Gaussian elimination, backwards substitution is O (n)
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Suboptimal decoding over the BEC: example I

Let us consider:

Hamming code (7, 4)

c =
[

1 1 1 0 0 0 0
]

is sent.

r =
[

1 ? 1 0 ? ? 0
]

is received.

Assuming the system is already triangularized and revealing as
much information as possible...

c5 = 0

c5 + c6 = 0 c6 = 0

c2 + c6 = 1 c2 = 1

1 1 0
0 1 1
0 0 1

c2c6
c5

 =

1
0
0



Complexity is O (n).

Decoding
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Suboptimal decoding over the BEC: example II

Another transmission:

(7, 4) Hamming code

c =
[

1 1 1 0 0 0 0
]

is sent.

r =
[

0 1 ? 0 0 ? ?
]

is received.

Now,

c3 ⊕ c7 = 0

c3 ⊕ c6 ⊕ c7 = 1

c6 ⊕ c7 = 0

There are no equations with a single variable. No information can
be revealed.

Decoding error

(if we were to use optimal decoding, c3 is revealed (c3 = 1) by
adding the last two equations)
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Classical v. modern coding theory

Classical

Optimal decoding via ML/MAP rule
with O

(
n3
)
operations. It restrains

the coding schemes we can use in
practice.

Small size (n) because otherwise
decoding complexity becomes
prohibitive. We cannot operate very
close to capacity at vanishing error
probability.

Examples: Linear Block codes (BCH
codes, Reed Solomon Codes),
Convolutional codes...

Modern

Approximate decoding with
worse performance for the
sake of much less complexity
(O (n) operations).

Close to capacity at
vanishing error probability is
achieved using very long
codes! (large n)

Examples: Turbo Codes,
LDPC codes, Polar Codes.
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Tanner graph

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1



The constraints given by this matrix can be represented using a
Tanner graph

r1 r2 r3 r4 r5 r6 r7

Variable nodes

Parity check nodes
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Belief propagation

Initialization: variable nodes send the channel observation to the
parity check nodes they are connected to:

1 ? 1 0 ? ? 0

1 1 ?

0

? 1 ?
0

0 ? ? 0

While there is any unsolved “?”
1 Using the received information, each parity check node tries to solve for

the variable that sent a “?” message. If possible, they send the value

obtained to the variable nodes. Otherwise they send a “?” message.

Only parity-check nodes with a single unknown can solve
a variable!

2 Variable nodes send their new value to the parity check nodes...or they
resend a “?” message.
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Belief propagation

First iteration

1 ? 1 0 ? ? 0

1 1 0
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? 1 ?
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Belief propagation

Second iteration

1 ? 1 0 0 0 0

1 1 0

0

? 1 0
0

0 0 0 0

Third iteration

1 1 1 0 0 0 0

1 1 0

0

1 1 0
0

0 0 0 0
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Belief propagation

Second iteration

1 ? 1 0 0 0 0

1 1 0

0

? 1 0
0

0 0 0 0

Third iteration

1 1 1 0 0 0 0

1 1 0
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1 1 0
0
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Belief propagation

Some remarks:

In general, the performance obtained with the suboptimal
decoder is quite poor (lots of decoding errors).

Given a parity check matrix H of dimensions (n − k)× n, the
number ones per row can be as high as n.

If a row has αn ones, then the probability that αn − 1 of the
variables are correctly received and only one is unknown is

αnε(1− ε)(αn−1)

which tends to 0 (⇒ decoding error) as n→∞.

(α ∈ (0, 1) ≡ rate of 1s per bit)
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Low-density Parity-Check codes

LDPC codes: linear block codes defined by sparse parity-check
matrices.

H(n−k)×n, cHT = 0 ∀c ∈ C

LDPC (3,6) with n = 20
76 binary erasure channel

Example 3.8 ((3,6)-Regular Code). Consider the parity-check matrix

(3.9)
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¿ebipartite graph representingC(H) is shownon the le of Figure 3.10. Each check
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Figure 3.10: Le : Tanner graph of H given in (3.9). Right: Tanner graph of [7,4,3]
Hamming code corresponding to the parity-check matrix on page 15. ¿is graph is
discussed in Example 3.11.

node represents one linear constraint (one row ofH). For the particular example we
start with 20 degrees of freedom (20 variable nodes). ¿e 10 constraints reduce the
number of degrees of freedomby atmost 10 (and exactly by 10 if all these constraints
are linearly independent as in this speci�c example).¿erefore at least 10 degrees of
freedom remain. It follows that the shown code has rate (at least) one-half. n

§3.4. Low-Density Parity-Check Codes
In a nutshell, low-density parity-check (LDPC) codes are linear codes that have at
least one sparse Tanner graph. ¿e primary reason for focusing on such codes is
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node represents one linear constraint (one row ofH). For the particular example we
start with 20 degrees of freedom (20 variable nodes). ¿e 10 constraints reduce the
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§3.4. Low-Density Parity-Check Codes
In a nutshell, low-density parity-check (LDPC) codes are linear codes that have at
least one sparse Tanner graph. ¿e primary reason for focusing on such codes is

The density of ones in the matrix H is 6/n and the rate is R = 0.5.
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Imposing structure on H

If the number of ones per row is fixed to 6, e.g.,

[
c1 c2 · · · c20

]


0
...
1
...

 = 0⇒ c5 + c9 + c10 + c11 + c16 + c20 = 0

then the probability that each row in H yields a single unknown,
e.g.,

c5+? + c10 + c11 + c16 + c20 = 0

is
6ε(1− ε)5,

which does not depend on n. An equation with a single
unknown can be solved immediately...and once the variable is
revealed, there is a non-zero probability that a new row with a
single unknown is created. This probability does not depend on
n either!!
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BER over BEC

Bit-error rate of the (3, 6) ensemble over the BEC; n = 28 (◦),
n = 29 (�), n = 211 (B).
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Asymptotic performance 
(threshold) 

The threshold ε∗ can be computed analytically. It only depends
on the connectivity pattern in matrix H!.
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