Introduction 00000000000 Encoding 00 Decoding 00000000000000 Linear block codes

Cyclic codes

Channel coding Introduction & linear codes

> Manuel A. Vázquez Jose Miguel Leiva Joaquín Míguez

February 27, 2024

Introduction	Encoding	Decoding	Linear block codes	Cyclic codes
0000000000	00	000000000000		00000

Index

- Channel models
- Fundamentals
- 2 Encoding
- 3 Decoding
 - Hard decoding
 - Soft decoding
 - Coding gain
- 4 Linear block codes
 - Fundamentals
 - Decoding

5 Cyclic codes

- Polynomials
- Decoding

1 Introduction

- Channel models
- Fundamentals
- 2 Encoding
- 3 Decoding
 - Hard decoding
 - Soft decoding
 - Coding gain
- 4 Linear block codes
 - Fundamentals
 - Decoding

5 Cyclic codes

- Polynomials
- Decoding

(Channel) Coding

Goal

Add redundancy to the transmitted information so that it can be recovered if errors happen during transmission.

(Channel) Coding

Goal

Add redundancy to the transmitted information so that it can be recovered if errors happen during transmission.

Example: repetition code • $0 \rightarrow 000$ • $1 \rightarrow 111$ so that, e.g., $010 \rightarrow 000\,111\,000$

(Channel) Coding

Goal

Add redundancy to the transmitted information so that it can be recovered if errors happen during transmission.

Example: repetition code • $0 \rightarrow 000$ • $1 \rightarrow 111$ so that, e.g.,

$010 \to 000\,111\,000$

What should we decide it was transmitted if we receive

 $010\,100\,000\,?$

000 (instead of 010)!

				00000
Introduction	Encoding	Decoding	Linear block codes	Cyclic codes

This model can be analyzed at different levels...

This model can be analyzed at different levels...

• Digital channel

This model can be analyzed at different levels...

- Digital channel
- Gaussian channel

Introduction	Encoding 00	Decoding 0000000000000	Linear block codes	Cyclic cod
DU LI				

В

Introduction	Encoding 00	Decoding 000000000000	Linear block codes	Cyclic codes
Gaussian	channel ((with digital input))	

Some basic concepts

Code

Mapping from a sequence of k bits, $\mathbf{b} \in {\mathbf{b}_1, \mathbf{b}_2, \cdots}$, onto another one of n > k bits, $\mathbf{c} \in {\mathbf{c}_1, \mathbf{c}_2, \cdots}$.

Some basic concepts

Code

Mapping from a sequence of k bits, $\mathbf{b} \in {\mathbf{b}_1, \mathbf{b}_2, \cdots}$, onto another one of n > k bits, $\mathbf{c} \in {\mathbf{c}_1, \mathbf{c}_2, \cdots}$.

• Probability of error for b_i

$$P_e^i = Pr\{\hat{\mathbf{b}} \neq \mathbf{b}_i | \mathbf{b} = \mathbf{b}_i\}, \ i = 1, \dots, 2^k$$

• Maximum probability of error: $P_e^{\max} = \max_i P_e^i$

Some basic concepts

Code

Mapping from a sequence of k bits, $\mathbf{b} \in {\mathbf{b}_1, \mathbf{b}_2, \cdots}$, onto another one of n > k bits, $\mathbf{c} \in {\mathbf{c}_1, \mathbf{c}_2, \cdots}$.

• Probability of error for b_i

$$P_e^i = Pr\{\hat{\mathbf{b}} \neq \mathbf{b}_i | \mathbf{b} = \mathbf{b}_i\}, \ i = 1, \dots, 2^k$$

- Maximum probability of error: $P_e^{\max} = \max_i P_e^i$
- **Rate**: The rate of a code is the number of information bits, *k*, carried by a codeword of length *n*.

$$R = k/n$$

$$P_e = \frac{\# \text{ codewords received incorrectly}}{\text{overall } \# \text{ codewords}} = \frac{v}{w}$$

$$P_e = \frac{\# \text{ codewords received incorrectly}}{\text{overall } \# \text{ codewords}} = \frac{v}{w}$$

• BER (Bit Error Rate): bit error probability

$$BER = \frac{\# \text{ incorrect bits}}{\# \text{ transmitted bits}}$$

$$P_e = \frac{\# \text{ codewords received incorrectly}}{\text{overall } \# \text{ codewords}} = \frac{v}{w}$$

• BER (Bit Error Rate): bit error probability

$$BER = \frac{\# \text{ incorrect bits}}{\# \text{ transmitted bits}}$$

worst-case scenario
$$\rightarrow BER = \frac{v \times k}{w \times k} = P_e$$

$$P_e = \frac{\# \text{ codewords received incorrectly}}{\text{overall } \# \text{ codewords}} = \frac{v}{w}$$

• BER (Bit Error Rate): bit error probability

$$BER = \frac{\# \text{ incorrect bits}}{\# \text{ transmitted bits}}$$

worst-case scenario
$$\rightarrow BER = \frac{v \times k}{w \times k} = P_e$$

best-case scenario $\rightarrow BER = \frac{v \times 1}{w \times k} = \frac{P_e}{k}$

$$P_e = \frac{\# \text{ codewords received incorrectly}}{\text{overall } \# \text{ codewords}} = \frac{v}{w}$$

• BER (Bit Error Rate): bit error probability

$$BER = \frac{\# \text{ incorrect bits}}{\# \text{ transmitted bits}}$$

worst-case scenario
$$\rightarrow BER = \frac{v \times k}{w \times k} = P_e$$

best-case scenario $\rightarrow BER = \frac{v \times 1}{w \times k} = \frac{P_e}{k} \Rightarrow \frac{P_e}{k} \leq BER \leq P_e$

Channel coding theorem

Theorem: Channel coding (Shannon, 1948)

If C is the capacity of a channel, then it is possible to *reliably* transmit with rate R < C.

Channel coding theorem

Theorem: Channel coding (Shannon, 1948)

If C is the capacity of a channel, then it is possible to *reliably* transmit with rate R < C.

Capacity

It is the maximum of the mutual information between the input and output of the channel.

Channel coding theorem

Theorem: Channel coding (Shannon, 1948)

If C is the capacity of a channel, then it is possible to *reliably* transmit with rate R < C.

Capacity

It is the maximum of the mutual information between the input and output of the channel.

Reliable transmission

There is a sequence of codes (n, k) = (n, nR) such that, when $n \to \infty$, $P_e^{\max} \to 0$.

Introduction 00000000000	Encoding 00	Decoding 000000000000	Linear block codes	Cyclic codes

Channel coding theorem: example

$$C=1-H_b(p),$$

being p the channel BER and H_b the binary entropy.

Introduction 00000000000	Encoding 00	Decoding 000000000000	Linear block codes	Cyclic codes

Channel coding theorem: example

$$C=1-H_b(p),$$

being p the channel BER and H_b the binary entropy.

$$p = 0.15 \Rightarrow C_1 = 0.39 \qquad p = 0.13 \Rightarrow C_2 = 0.44 p = 0.17 \Rightarrow C_3 = 0.34 \qquad p = 0.19 \Rightarrow C_4 = 0.29$$

and a code with rate R = 1/3 = 0.33.

Introduction ○○○○○○○○○○○	Encoding 00	Decoding 000000000000	Linear block codes	Cyclic codes

Channel coding theorem: example

$$C=1-H_b(p),$$

being p the channel BER and H_b the binary entropy.

Let us consider <u>4</u> binary channels with

 $p = 0.15 \Rightarrow C_1 = 0.39$ $p = 0.13 \Rightarrow C_2 = 0.44$ $p = 0.17 \Rightarrow C_3 = 0.34$ $p = 0.19 \Rightarrow C_4 = 0.29$

and a code with rate R = 1/3 = 0.33.

Channel coding theorem

A code with rate R = 1/3 only respects the Shannon limit in the first three scenarios.

Introduction Encoding Decoding Linear block codes Cyclic codes

Channel coding theorem: example

The figure shows the evolution of the codeword error probability as a function of n: it approaches 0 when R < C.

Figure: Left: logarithmic scale; right: linear scale

ntroduction	Encoding 00	Decoding 000000000000	Linear block codes	Cyclic code 00000
Definitions				

Definition: Redundancy

The number of bits, r = n - k, added by the encoder.

It allows rewriting the rate of the code as $R = \frac{k}{n} = \frac{n-r}{n} = 1 - \frac{r}{n}$

Definitions

Definition: Redundancy

The number of bits, r = n - k, added by the encoder.

It allows rewriting the rate of the code as $R = \frac{k}{n} = \frac{n-r}{n} = 1 - \frac{r}{n}$

Definition: Hamming distance...

...between two binary sequences is the number of different bits.

It is a measure of how different two sequences of bits are. For instance, $d_H(1010, 1001) = 2$.

Definitions

Definition: Redundancy

The number of bits, r = n - k, added by the encoder.

It allows rewriting the rate of the code as $R = \frac{k}{n} = \frac{n-r}{n} = 1 - \frac{r}{n}$

Definition: Hamming distance...

...between two binary sequences is the number of different bits.

It is a measure of how different two sequences of bits are. For instance, $d_H(1010, 1001) = 2$.

Definition: Minimum distance of a code

$$d_{min} = \min_{i \neq j} d_H(\mathbf{c_i}, \mathbf{c_j})$$

Introduction 0000000000	Encoding ●○	Decoding 000000000000	Linear block codes	Cyclic codes

Index

Introduction

- Channel models
- Fundamentals

2 Encoding

- 3 Decoding
 - Hard decoding
 - Soft decoding
 - Coding gain
- 4 Linear block codes
 - Fundamentals
 - Decoding

5 Cyclic codes

- Polynomials
- Decoding

the coding scheme is always placed before the system

and we have

$$B[0] = C[0]$$

$$B[1] = C[1]$$

$$\vdots \qquad \vdots$$

$$Codeword$$

Introduction 0000000000	Encoding 00	Decoding ●○○○○○○○○○○○	Linear block codes	Cyclic codes

Index

- - Channel models
 - Eundamentals

- 3 Decoding
 - Hard decoding
 - Soft decoding
 - Coding gain
- - Eundamentals
 - Decoding
- 6 Cyclic codes
 - Polynomials
 - Decoding

Introduction 0000000000	Encoding 00	Decoding ○●00000000000	Linear block codes	Cyclic codes
Hard decod	ing			

• Decoding at the *bit level*

Introduction 0000000000	Encoding 00	Decoding ○●000000000000000	Linear block codes	Cyclic codes
Hard deco	ding			

- Decoding at the *bit level*
- It relies on the digital channel

$$B \longrightarrow \mathsf{Digital \ channel} \hat{B}$$

Introduction 00000000000	Encoding 00	Decoding ○●000000000000000	Linear block codes	Cyclic codes
Hard deco	ding			

- Decoding at the *bit level*
- It relies on the digital channel

1

B — Digital channel
$$\hat{B}$$

• The input to the decoder are bits coming from the Detector , the \hat{B} 's.

- Decoding at the *bit level*
- It relies on the digital channel

B — Digital channel
$$\hat{B}$$

- The input to the decoder are bits coming from the Detector , the \hat{B} 's.
- Metric is the Hamming distance.

Introduction 00000000000	Encoding 00	Decoding ••••••	Linear block codes	Cyclic codes
Hard deco	ding			

- Decoding at the *bit level*
- It relies on the digital channel

B — Digital channel
$$\hat{B}$$

- The input to the decoder are bits coming from the Detector , the \hat{B} 's.
- Metric is the Hamming distance.

Notation

$$\mathbf{c}_{i} = \begin{bmatrix} C^{i}[0], C^{i}[1], \cdots C^{i}[n-1] \end{bmatrix} \equiv i \text{-th codeword}$$
$$\mathbf{r} = \begin{bmatrix} \hat{B}[0], \hat{B}[1], \cdots \hat{B}[n-1] \end{bmatrix} \equiv \text{received word}$$

• Maximum a Posteriori (MAP) rule: we decide c_i if

$$p(\mathbf{c}_i|\mathbf{r}) > p(\mathbf{c}_j|\mathbf{r}) \qquad \forall j \neq i$$

• Maximum a Posteriori (MAP) rule: we decide \mathbf{c}_i if

$$p(\mathbf{c}_i|\mathbf{r}) > p(\mathbf{c}_j|\mathbf{r}) \qquad \forall j \neq i$$

 If all the codewords are equally likely, it is equivalent to Maximum Likelihood (ML),

$$p(\mathbf{r}|\mathbf{c}_i) > p(\mathbf{r}|\mathbf{c}_j) \qquad \forall j \neq i$$

• Maximum a Posteriori (MAP) rule: we decide \mathbf{c}_i if

$$p(\mathbf{c}_i|\mathbf{r}) > p(\mathbf{c}_j|\mathbf{r}) \qquad \forall j \neq i$$

 If all the codewords are equally likely, it is equivalent to Maximum Likelihood (ML),

$$p(\mathbf{r}|\mathbf{c}_i) > p(\mathbf{r}|\mathbf{c}_j) \qquad \forall j \neq i$$

• Likelihoods can be expressed in terms of d_H

$$p(\mathbf{r}|\mathbf{c}_i) = \epsilon^{d_H(\mathbf{r},\mathbf{c}_i)} (1-\epsilon)^{n-d_H(\mathbf{r},\mathbf{c}_i)}$$

 $\epsilon \equiv \mathit{channel}$ bit error probability

• Maximum a Posteriori (MAP) rule: we decide \mathbf{c}_i if

$$p(\mathbf{c}_i|\mathbf{r}) > p(\mathbf{c}_j|\mathbf{r}) \qquad \forall j \neq i$$

 If all the codewords are equally likely, it is equivalent to Maximum Likelihood (ML),

$$p(\mathbf{r}|\mathbf{c}_i) > p(\mathbf{r}|\mathbf{c}_j) \qquad \forall j \neq i$$

• Likelihoods can be expressed in terms of d_H

$$p(\mathbf{r}|\mathbf{c}_i) = \epsilon^{d_H(\mathbf{r},\mathbf{c}_i)} (1-\epsilon)^{n-d_H(\mathbf{r},\mathbf{c}_i)}$$

 $\epsilon \equiv channel$ bit error probability

• If $\epsilon < 0.5$ ML rule is tantamount to deciding c_i if

$$d_H(\mathbf{r},\mathbf{c}_i) < d_H(\mathbf{r},\mathbf{c}_j) \qquad \forall j \neq i.$$

Hard decoding: error detection vs. correction

Assuming errors happened during transmission, there are two possible scenarios:

and decoding. Choi detection vs. correction

Assuming errors happened during transmission, there are two possible scenarios:

• We do **not** detect them

Hard decoding: error detection vs. correction

Assuming errors happened during transmission, there are two possible scenarios:

• We do **not** detect them

(we only detect errors if $\mathbf{r} \neq \mathbf{c}_i$ $i = 1, ..., 2^k$)

Assuming errors happened during transmission, there are two possible scenarios:

• We do **not** detect them

(we only detect errors if $\mathbf{r} \neq \mathbf{c}_i$ $i = 1, \dots, 2^k$)

• We do detect them, in which case we must make a decision:

Assuming errors happened during transmission, there are two possible scenarios:

• We do **not** detect them

(we only detect errors if $\mathbf{r} \neq \mathbf{c}_i$ $i = 1, \dots, 2^k$)

- We do detect them, in which case we must make a decision:
 - We don't risk correct them and request a *retransmission* (we **cannot** correct *with confidence*)

Hard decoding: error detection vs. correction

Assuming errors happened during transmission, there are two possible scenarios:

• We do **not** detect them

(we only detect errors if $\mathbf{r} \neq \mathbf{c}_i$ $i = 1, \dots, 2^k$)

• We do detect them, in which case we must make a decision:

- We don't risk correct them and request a *retransmission* (we **cannot** correct *with confidence*)
- we *try* and correct them (a risk is is involved!!)

Hard decoding: error detection vs. correction

Assuming errors happened during transmission, there are two possible scenarios:

• We do **not** detect them

(we only detect errors if $\mathbf{r} \neq \mathbf{c}_i$ $i = 1, \dots, 2^k$)

• We do detect them, in which case we must make a decision:

- We don't risk correct them and request a *retransmission* (we **cannot** correct *with confidence*)
- we *try* and correct them (a risk is is involved!!)

We need a *policy* for the latter scenario: in this course we **always** try and fix the errors.

Hard decoding: detection

• We detect a word error when **less than** *d_{min}* bit errors happen.

Hard decoding: detection

- We detect a word error when **less than** *d_{min}* bit errors happen.
- Probability of an erroneous codeword going **undetected** (at least *d_{min}* bit errors)

$$P_{nd} \leq \sum_{m=d_{min}}^{n} {n \choose m} \epsilon^{m} (1-\epsilon)^{n-m}$$

where ϵ is the bit error probability in the system, and d_{min} is the minimum distance between codewords.

Hard decoding: detection

- We detect a word error when **less than** *d_{min}* bit errors happen.
- Probability of an erroneous codeword going **undetected** (at least *d_{min}* bit errors)

$$P_{nd} \leq \sum_{m=d_{min}}^{n} {n \choose m} \epsilon^{m} (1-\epsilon)^{n-m}$$

where ϵ is the bit error probability in the system, and d_{min} is the minimum distance between codewords.

A bound on the probability of error... ...since it might happen that d_{min} bit errors do not turn a codeword into another one $\Rightarrow \leq$ rather than =

$$t = \lfloor (d_{min} - 1)/2 \rfloor$$
 errors.

$$t = \lfloor (d_{min} - 1)/2 \rfloor$$
 errors.

• Error correction probability:

$$P_e \leq \sum_{m=t+1}^n {n \choose m} \epsilon^m (1-\epsilon)^{n-m}$$

$$t = \lfloor (d_{min} - 1)/2 \rfloor$$
 errors.

• Error correction probability:

$$P_e \leq \sum_{m=t+1}^n \binom{n}{m} \epsilon^m (1-\epsilon)^{n-m}$$

A bound on the probability of error...

...since it is possible to correct more than t errors (there is no guarantee, though) $\Rightarrow \leq$ rather than =

$$t = \lfloor (d_{min} - 1)/2 \rfloor$$
 errors.

• Error correction probability:

$$P_e \leq \sum_{m=t+1}^n \binom{n}{m} \epsilon^m (1-\epsilon)^{n-m}$$

A bound on the probability of error...

...since it is possible to correct more than t errors (there is no guarantee, though) $\Rightarrow \leq$ rather than =

🛃 Approximate bound

The first element in the summation is a good approximation if ϵ is small and d_{min} large.

• Decoding at the element from the constellation level

- Decoding at the element from the constellation level
- It relies on the Gaussian channel
 A Gaussian channel

$$q = A + n$$

– q

where **n** is a Gaussian noise vector.

- Decoding at the element from the constellation level
- It relies on the Gaussian channel

$$q = A + n$$

where \mathbf{n} is a Gaussian noise vector.

• The input to the decoder are the observations coming from the Demodulator, the **q**'s.

- Decoding at the element from the constellation level
 - It relies on the Gaussian channel

$$\mathbf{q} = \mathbf{A} + \mathbf{n}$$

where \mathbf{n} is a Gaussian noise vector.

- The input to the decoder are the observations coming from the Demodulator, the **q**'s.
- Metric is Euclidean distance

- Decoding at the element from the constellation level
 - It relies on the Gaussian channel

$$\mathbf{q} = \mathbf{A} + \mathbf{n}$$

where \mathbf{n} is a Gaussian noise vector.

- The input to the decoder are the observations coming from the Demodulator, the **q**'s.
- Metric is Euclidean distance

Notation

$$m \equiv \# \text{ bits carried by every } \mathbf{A}$$
$$\tilde{\mathbf{c}}_{i} = \left[\mathbf{A}^{(i)}[0], \mathbf{A}^{(i)}[1], \cdots \mathbf{A}^{(i)}[n/m-1]\right] \equiv i\text{-th codeword}$$
$$\tilde{\mathbf{r}} = [\mathbf{q}[0], \mathbf{q}[1], \cdots \mathbf{q}[n/m-1]] \equiv \text{received word}$$

• The codeword error probability can be approximated as

$$P_e \approx \kappa \mathrm{Q}\left(rac{d_{min}/2}{\sqrt{N_0/2}}
ight)$$
 (1)

where κ is the *kiss number*.

Definition: kiss number

It is the maximum number of codewords that are at distance d_{min} from any given.

• If we set equal the *BER* with and without coding, the **coding** gain is obtained as

$$G = \frac{(E_b/N_0)_{nc}}{(E_b/N_0)_c}$$

• If we set equal the *BER* with and without coding, the **coding** gain is obtained as

$$G = \frac{(E_b/N_0)_{nc}}{(E_b/N_0)_c}$$

• Different for soft and hard decoding

• If we set equal the *BER* with and without coding, the **coding** gain is obtained as

$$G = \frac{(E_b/N_0)_{nc}}{(E_b/N_0)_c}$$

• Different for soft and hard decoding

To compute the individual E_b/N_0 's, it is often useful...

Stirling's approximation
$$Q(x) \approx \frac{1}{2}e^{-\frac{x^2}{2}}$$

Let us consider a binary antipodal constellation 2-PAM ($\pm\sqrt{E_s}$), with the code

\mathbf{b}_i	C <i>i</i>
00	000
01	011
10	110
11	101

Coding gain: example - hard decoding

• This code cannot correct any error since $t = \lfloor (d_{min} - 1)/2 \rfloor = 0$, and the codeword error probability is

$$P_e \leq \sum_{m=1}^{3} {3 \choose m} \epsilon^m (1-\epsilon)^{n-m} \approx 3\epsilon$$

where $\epsilon = Q(\sqrt{2E_s/N_0})$.

Introduction Encoding Decoding Linear block codes Cyclic codes

Coding gain: example - hard decoding

• This code cannot correct any error since $t = \lfloor (d_{min} - 1)/2 \rfloor = 0$, and the codeword error probability is

$$P_e \leq \sum_{m=1}^{3} {3 \choose m} \epsilon^m (1-\epsilon)^{n-m} \approx 3\epsilon$$

where $\epsilon = Q(\sqrt{2E_s/N_0})$.

• Bit error probability

$$BER \approx \frac{2}{3} 3Q \left(\sqrt{\frac{2E_s}{N_0}} \right)$$

Introduction Encoding Decoding Linear block codes Cyclic codes

Coding gain: example - hard decoding

• This code cannot correct any error since $t = \lfloor (d_{min} - 1)/2 \rfloor = 0$, and the codeword error probability is

$$P_e \leq \sum_{m=1}^{3} {3 \choose m} \epsilon^m (1-\epsilon)^{n-m} \approx 3\epsilon$$

where $\epsilon = Q(\sqrt{2E_s/N_0})$.

Bit error probability

$$BER \approx \frac{2}{3} 3Q \left(\sqrt{\frac{2E_s}{N_0}} \right)$$

• In order to express it in terms of E_b , we use that $2E_b = 3E_s$, and hence

$$BER \approx 2Q\left(\sqrt{\frac{4E_b}{3N_0}}\right)$$

Coding gain: example - soft decoding

 $\bullet\,$ We decide b from the output of the Gaussian channel,

$$\mathbf{q} = (\mathbf{q}[0], \mathbf{q}[1], \mathbf{q}[2]) = (\mathbf{A}[0] + \mathbf{n}[0], \mathbf{A}[1] + \mathbf{n}[1], \mathbf{A}[2] + \mathbf{n}[2])$$

Coding gain: example - soft decoding

 $\bullet\,$ We decide b from the output of the Gaussian channel,

$$\mathbf{q} = (\mathbf{q}[0], \mathbf{q}[1], \mathbf{q}[2]) = (\mathbf{A}[0] + \mathbf{n}[0], \mathbf{A}[1] + \mathbf{n}[1], \mathbf{A}[2] + \mathbf{n}[2])$$

• Tantamount to the detector for the constellation

$$\begin{pmatrix} -\sqrt{E_s} \\ -\sqrt{E_s} \\ -\sqrt{E_s} \\ -\sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} -\sqrt{E_s} \\ \sqrt{E_s} \\ \sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} \sqrt{E_s} \\ \sqrt{E_s} \\ -\sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} \sqrt{E_s} \\ -\sqrt{E_s} \\ \sqrt{E_s} \end{pmatrix}$$

which has minimum (Euclidean) distance $d_{min} = 2\sqrt{2E_s}$

Coding gain: example - soft decoding

• We decide **b** from the output of the Gaussian channel,

$$\mathbf{q} = (\mathbf{q}[0],\mathbf{q}[1],\mathbf{q}[2]) = (\mathbf{A}[0] + \mathbf{n}[0],\mathbf{A}[1] + \mathbf{n}[1],\mathbf{A}[2] + \mathbf{n}[2])$$

• Tantamount to the detector for the constellation

$$\begin{pmatrix} -\sqrt{E_s} \\ -\sqrt{E_s} \\ -\sqrt{E_s} \\ -\sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} -\sqrt{E_s} \\ \sqrt{E_s} \\ \sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} \sqrt{E_s} \\ \sqrt{E_s} \\ -\sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} \sqrt{E_s} \\ -\sqrt{E_s} \\ \sqrt{E_s} \end{pmatrix}$$

which has minimum (Euclidean) distance $d_{min} = 2\sqrt{2E_s}$ • From (1) the codeword error probability is

$$P_e \approx 3Q\left(\sqrt{\frac{4E_s}{N_0}}\right)$$

Coding gain: example - soft decoding

• We decide **b** from the output of the Gaussian channel,

$$\mathbf{q} = (\mathbf{q}[0], \mathbf{q}[1], \mathbf{q}[2]) = (\mathbf{A}[0] + \mathbf{n}[0], \mathbf{A}[1] + \mathbf{n}[1], \mathbf{A}[2] + \mathbf{n}[2])$$

• Tantamount to the detector for the constellation

$$\begin{pmatrix} -\sqrt{E_s} \\ -\sqrt{E_s} \\ -\sqrt{E_s} \\ -\sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} -\sqrt{E_s} \\ \sqrt{E_s} \\ \sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} \sqrt{E_s} \\ \sqrt{E_s} \\ -\sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} \sqrt{E_s} \\ -\sqrt{E_s} \\ \sqrt{E_s} \end{pmatrix}$$

which has minimum (Euclidean) distance $d_{min} = 2\sqrt{2E_s}$ • From (1) the codeword error probability is

$$P_e \approx 3Q \left(\sqrt{\frac{4E_s}{N_0}}\right)$$

• BER as a function of E_b : BER $\approx 2Q\left(\sqrt{\frac{8E_b}{3N_0}}\right)$

• Without coding, we have $E_b = E_s$, and

$$\operatorname{BER}_{nc} = \epsilon = Q(\sqrt{2E_b/N_0})$$

Coding gain: example - hard vs soft decoding

• Without coding, we have $E_b = E_s$, and

$$BER_{nc} = \epsilon = Q(\sqrt{2E_b/N_0})$$

- Gain with hard decoding
 - We set equal BER_c and BER_{nc}
 - Approximation: $Q(\cdot)$

$$G = \frac{(E_b/N_0)_{nc}}{(E_b/N_0)_c} = 2/3 \approx -1.76 dB$$

• We are actually losing performance!! (expected, since the code is not able correct any error)

Coding gain: example - hard vs soft decoding

• Without coding, we have $E_b = E_s$, and

$$BER_{nc} = \epsilon = Q(\sqrt{2E_b/N_0})$$

- Gain with hard decoding
 - We set equal BER_c and BER_{nc}
 - Approximation: $Q(\cdot)$

$$G = \frac{(E_b/N_0)_{nc}}{(E_b/N_0)_c} = 2/3 \approx -1.76 dB$$

- We are actually losing performance!! (expected, since the code is not able correct any error)
- Soft decoding

$$G = 4/3 \approx 1.25 dB$$

• Now we are making good use of coding

Introduction	Encoding	Decoding	Linear block codes	0
		000000000000	0000000000	

Index

Introduction

- Channel models
- Fundamentals
- 2 Encoding
- 3 Decoding
 - Hard decoding
 - Soft decoding
 - Coding gain

4 Linear block codes

- Fundamentals
- Decoding

5 Cyclic codes

- Polynomials
- Decoding

 Introduction
 Encoding
 Decoding
 Linear block codes
 Cyclic co

 Linear block codes
 Codes
 Codes
 Codes
 Codes

Galois field modulo 2 (GF(2)) $a + b = (a + b)_2$ $a \cdot b = (a \cdot b)_2$ Introduction Encoding Decoding Linear block codes Cyclic codes

Linear block codes

Galois field modulo 2 (*GF*(2)) $a + b = (a + b)_2$ $a \cdot b = (a \cdot b)_2$

Definition: Linear Block Code

A linear block code is a code in which any linear combination of codewords is also a codeword.

Galois field modulo 2 (GF(2)) $a + b = (a + b)_2$ $a \cdot b = (a \cdot b)_2$

Definition: Linear Block Code

A linear block code is a code in which any linear combination of codewords is also a codeword.

Properties

• It is a subspace in $GF(2)^n$ with 2^k elements.

Galois field modulo 2 (GF(2)) $a + b = (a + b)_2$ $a \cdot b = (a \cdot b)_2$

Definition: Linear Block Code

A linear block code is a code in which any linear combination of codewords is also a codeword.

Properties

- It is a subspace in $GF(2)^n$ with 2^k elements.
- The all-zeros word is a codeword.

Galois field modulo 2 (GF(2)) $a + b = (a + b)_2$ $a \cdot b = (a \cdot b)_2$

Definition: Linear Block Code

A linear block code is a code in which any linear combination of codewords is also a codeword.

Properties

- It is a subspace in $GF(2)^n$ with 2^k elements.
- The all-zeros word is a codeword.
- Every codeword has at least another codeword that is at *d_{min}* from it.

Introduction Encoding Decoding Ocoocococo Cyclic codes Cyclic codes

Linear block codes

Galois field modulo 2 (GF(2)**)** $a + b = (a + b)_2$ $a \cdot b = (a \cdot b)_2$

Definition: Linear Block Code

A linear block code is a code in which any linear combination of codewords is also a codeword.

Properties

- It is a subspace in $GF(2)^n$ with 2^k elements.
- The all-zeros word is a codeword.
- Every codeword has at least another codeword that is at *d_{min}* from it.
- *d_{min}* is the smallest weight (number of 1s) among the non-null codewords.

Introduction 0000000000	Encoding 00	Decoding 000000000000	Linear block codes	Cyclic codes

Linear block codes: structure

Elements in an (n, k) linear block code

Linear block codes: structure

Elements in an (n, k) linear block code

• **b** is the message, $1 \times k$

Introduction OCOCOCOCOCO Introduction Controduction Controduct

Elements in an (n, k) linear block code

• **b** is the message, $1 \times k$

• **c** is the codeword, $1 \times n$

- **b** is the message, $1 \times k$
- **c** is the codeword, $1 \times n$
- **r** is the received word, $1 \times n$ with

$$\mathbf{r}=\mathbf{c}+\mathbf{e}$$

• **e** is the noise
$$1 \times n$$

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$

• **e** is the noise $1 \times n$

• G is the generator matrix,

(for encoding)

• **r** is the received word, $[1 \times n]_{1 \times n}$ with

$$\mathbf{r}=\mathbf{c}+\mathbf{e}$$

• **e** is the noise $1 \times n$

• G is the generator matrix,

(for encoding)

• H is the **parity-check** matrix, (for decoding)

The mapping $\boldsymbol{b} \rightarrow \boldsymbol{c}$ is performed through matrix multiplication i.e.,

 $\mathbf{c} = \mathbf{b}\mathbf{G}.$

The mapping $\boldsymbol{b} \rightarrow \boldsymbol{c}$ is performed through matrix multiplication i.e.,

 $\mathbf{c} = \mathbf{b}\mathbf{G}.$

Keep in mind:

- **b** is $1 \times k$
- **G** is *k* × *n*
- c is $1 \times n$

The mapping $\boldsymbol{b} \rightarrow \boldsymbol{c}$ is performed through matrix multiplication i.e.,

 $\mathbf{c} = \mathbf{b}\mathbf{G}.$

Keep in mind:

- **b** is $1 \times k$
- **G** is *k* × *n*
- c is $1 \times n$

Property Every row of **G** is a codeword.

Introduction 00000000000	Encoding 00	Decoding 000000000000	¢	inear block codes	Cyclic codes
- .					

Parity-check matrix

Parity check matrix, H, is the orthogonal complement of G so that

 $\mathbf{c}\mathbf{H}^{\top} = \mathbf{0} \Leftrightarrow \mathbf{c} \text{ is a codeword}$

Parity-check matrix

Parity check matrix, H, is the orthogonal complement of G so that

 $\mathbf{c}\mathbf{H}^{\top}=\mathbf{0}\Leftrightarrow\mathbf{c}\text{ is a codeword}$

For the sake of convenience,

Definition: Syndrome The syndrome of the received sequence **r** is $\mathbf{s} = \mathbf{r}\mathbf{H}^{\top}$ (with dimensions $1 \times (n - k)$)

Then,

$$\mathbf{s} = \mathbf{0} \Leftrightarrow \mathbf{r}$$
 is a codeword.

Parity-check matrix

Parity check matrix, H, is the orthogonal complement of G so that

 $\mathbf{c}\mathbf{H}^{\top}=\mathbf{0}\Leftrightarrow\mathbf{c}\text{ is a codeword}$

For the sake of convenience,

Definition: Syndrome

The syndrome of the received sequence \mathbf{r} is

$$\mathbf{s} = \mathbf{r} \mathbf{H}^{ op}$$
 (with dimensions $1 \times (n-k)$)

Then,

$$\mathbf{s} = \mathbf{0} \Leftrightarrow \mathbf{r}$$
 is a codeword.

Syndrome-error connection

$$\mathbf{s} = \mathbf{r}\mathbf{H}^{T} = (\mathbf{c} + \mathbf{e})\mathbf{H}^{T} = \mathbf{c}\mathbf{H}^{T} + \mathbf{e}\mathbf{H}^{T} = \mathbf{e}\mathbf{H}^{T}$$

The minimum distance rule requires computing d_H between the received word, **r**, and every codeword...but we can carry out **syndrome** decoding

The minimum distance rule requires computing d_H between the received word, **r**, and every codeword...but we can carry out **syndrome** decoding

Beforehand:

Fill up a table yielding the syndrome associated with every possible error,

error (\mathbf{e})	syndrome(s)
÷	

 (If several errors yield the same syndrome, choose the one that is most likely, i.e., the one with the smallest weight)

The minimum distance rule requires computing d_H between the received word, **r**, and every codeword...but we can carry out **syndrome** decoding

Beforehand:

Fill up a table yielding the syndrome associated with every possible error,

error (\mathbf{e})	syndrome(s)
÷	

(If several errors yield the same syndrome,
 choose the one that is most likely, i.e., the one with the smallest weight)

In operation:

given the received word, r:

The minimum distance rule requires computing d_H between the received word, **r**, and every codeword...but we can carry out **syndrome** decoding

Beforehand:

In operation:

Fill up a table yielding the syndrome associated with every possible error,

error (\mathbf{e})	syndrome(s)
:	

(If several errors yield the same syndrome,
 choose the one that is most likely, i.e., the one with the smallest weight)

given the received word, **r**:

• Compute the syndrome $\mathbf{s} = \mathbf{r} \mathbf{H}^T$.

The minimum distance rule requires computing d_H between the received word, **r**, and every codeword...but we can carry out **syndrome** decoding

Beforehand:

Fill up a table yielding the syndrome associated with every possible error,

error (e)	syndrome(s)
÷	÷

(If several errors yield the same syndrome,
 choose the one that is most likely, i.e., the one with the smallest weight)

Cyclic codes

In operation: given the received word, **r**:

- Compute the syndrome $\mathbf{s} = \mathbf{r} \mathbf{H}^T$.
- O Look up the table for the error pattern, e, with that syndrome

The minimum distance rule requires computing d_H between the received word, **r**, and every codeword...but we can carry out **syndrome** decoding

Beforehand:

Fill up a table yielding the syndrome associated with every possible error.

error (\mathbf{e})	syndrome(s)

(If several errors yield the same syndrome, choose the one that is most likely, i.e., the one with the smallest weight)

In operation: given the received word, **r**:

- **1** Compute the syndrome $\mathbf{s} = \mathbf{r} \mathbf{H}^T$.
- Look up the table for the error pattern, e, with that syndrome
- Output Description Under the error

$$\hat{\mathbf{c}} = \mathbf{r} + \mathbf{e}$$

Definition: Systematic code

A code in which the message is always embedded in the encoded sequence (in the same place).

Definition: Systematic code

A code in which the message is always embedded in the encoded sequence (in the same place).

This can be easily imposed through the generator matrix,

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix}$$
 or $\mathbf{G} = \begin{bmatrix} \mathbf{P} & \mathbf{I}_k \end{bmatrix}$

Definition: Systematic code

A code in which the message is always embedded in the encoded sequence (in the same place).

This can be easily imposed through the generator matrix,

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix}$$
 or $\mathbf{G} = \begin{bmatrix} \mathbf{P} & \mathbf{I}_k \end{bmatrix}$

First/last k bits in c are equal to b, and the remaining n − k are redundancy.

Definition: Systematic code

A code in which the message is always embedded in the encoded sequence (in the same place).

This can be easily imposed through the generator matrix,

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix}$$
 or $\mathbf{G} = \begin{bmatrix} \mathbf{P} & \mathbf{I}_k \end{bmatrix}$

- First/last k bits in c are equal to b, and the remaining n − k are redundancy.
- If $\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix}$ it can be shown

$$\mathbf{H} = \begin{bmatrix} \mathbf{P}^T & \mathbf{I}_{n-k} \end{bmatrix}$$

Every Hamming code:

Every Hamming code:

It's perfect

Every Hamming code:

• It's perfect

Every Hamming code:

• It's perfect

•
$$d_{min} = 3$$

• $k = 2^j - j - 1$ and $n = 2^j - 1 \quad \forall j \in \mathbb{N} \ge 2$
• $j = 2 \rightarrow (3, 1)$
• $j = 3 \rightarrow (7, 4)$
• $j = 4 \rightarrow (15, 11)$

Hamming (7, 4): coding gain

 $\frac{E_b}{N_0}$

Introduction 00000000000	Encoding 00	Decoding 000000000000	Linear block codes	Cyclic codes
Hamming (7	7, 4): deco	ding		

Beforehand we apply

 $\mathbf{s} = \mathbf{e} \mathbf{H}^{\mathcal{T}}$

over every \mathbf{e} that entails a single error (the code can only correct 1 erroneous bit):

error	syndrome
0000000	000
1000000	101
0100000	110
0010000	111
0001000	011
0000100	100
0000010	010
0000001	001

Hamming (7, 4): decoding

Beforehand we apply

 $\mathbf{s} = \mathbf{e} \mathbf{H}^{\mathcal{T}}$

over every \mathbf{e} that entails a single error (the code can only correct 1 erroneous bit):

\mathcal{A} Example: $r = [1100101]$		
	syndrome	error
	000	0000000
	101	1000000
	110	0100000
$s = rH' = [1100101] \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} = [11]$	111	0010000
	011	0001000
	100	0000100
and hance a [010000] as that	010	0000010
and hence $\mathbf{e} = [0100000]$ so that	001	0000001
$\hat{\mathbf{c}} = \mathbf{r} + \mathbf{e} = \mathbf{r} = [1000101]$.		

- Computing H from G

If the code is systematic, we have an easy way of computing the parity-check matrix...

...but what if it's not?

Equivalent codes

- Computing H from G

If the code is systematic, we have an easy way of computing the parity-check matrix...

...but what if it's not? If the code is **not** systematic, one can apply operations on the generator matrix, **G**, to try and transform it into that of an *equivalent* systematic code, $\mathbf{G}' = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix}$. Allowed operations are:

On rows replace any row with a linear combination of itself and other rows **or** swapping rows.

On columns swapping columns.

Equivalent codes

- Computing H from G

If the code is systematic, we have an easy way of computing the parity-check matrix...

...but what if it's not? If the code is **not** systematic, one can apply operations on the generator matrix, **G**, to try and transform it into that of an *equivalent* systematic code, $\mathbf{G}' = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix}$. Allowed operations are:

On rows replace any row with a linear combination of itself and other rows **or** swapping rows.

On columns swapping columns.

Definition: Equivalent codes

Two codes are equivalent if they have the same codewords (after, maybe, reordering the bits).

Introduction	Encoding	Decoding	Linear block codes	Cyclic code
0000000000	00	000000000000		●○○○○

Index

Introduction

- Channel models
- Fundamentals
- 2 Encoding
- 3 Decoding
 - Hard decoding
 - Soft decoding
 - Coding gain
- 4 Linear block codes
 - Fundamentals
 - Decoding

5 Cyclic codes

- Polynomials
- Decoding

Large values of k and nWorking with matrices is not efficient!!

Large values of *k* and *n* Working with matrices is not efficient!!

Definition: Cyclic code

It is a linear block code in which any *circular* shift of a codeword results in another codeword.

In a cyclic code,

- If $[c_0, c_1, \dots, c_{n-1}]$ is a codeword, then so is $[c_{n-1}, c_0, c_1, \dots, c_{n-2}]$
 - i.e., every codeword is a (circularly) shifted version of another codeword.

Introduction Encoding Decoding Linear block codes Cyclic codes

Polynomial representation of codewords

Codeword $[c_0, c_1, \cdots, c_{n-1}]$ is represented as the polynomial

$$c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

How is

$$[\mathbf{c}_0, \mathbf{c}_1, \cdots, \mathbf{c}_{n-1}] \rightarrow [\mathbf{c}_{n-1}, \mathbf{c}_0, \cdots, \mathbf{c}_{n-2}]$$

achieved mathematically?

Polynomial representation of codewords

Codeword $[c_0, c_1, \cdots, c_{n-1}]$ is represented as the polynomial

$$c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

How is

$$[\textbf{c}_0, \textbf{c}_1, \cdots, \textbf{c}_{n-1}] \rightarrow [\textbf{c}_{n-1}, \textbf{c}_0, \cdots, \textbf{c}_{n-2}]$$

achieved mathematically? By multiplying c(x) times x modulo $(x^n - 1)$, i.e.,

$$xc(x) = c_0 x + c_1 x^2 + \dots + c_{n-1} x^n = c_0 x + \dots + c_{n-1} x^n + c_{n-1} - c_{n-1}$$
$$= c_{n-1}(x^n - 1) + c_{n-1} + c_0 x + c_1 x^2 + \dots + c_{n-2} x^{n-1}$$

Hence,

$$(xc(x))_{x^{n}-1} = \underbrace{c_{n-1} + c_{0}x + c_{1}x^{2} + \dots + c_{n-2}x^{n-1}}_{[c_{n-1},c_{0},\dots,c_{n-2}]}$$

Introduction	Encoding	Decoding	Linear block codes	Cyclic codes
0000000000	00	000000000000		○○○●○
Encoding				

 \rightarrow

G generator matrix g(x)generator polynomial

Coding is carried out by multiplying, modulo $x^n - 1$, the polynomial representing **b**_i by a **generator polynomial**, g(x),

$$c(x) = (b(x)g(x))_{x^n-1}$$

Coding is carried out by multiplying, modulo $x^n - 1$, the polynomial representing **b**_i by a **generator polynomial**, g(x),

$$c(x) = (b(x)g(x))_{x^n-1}$$

The generator polynomial, g(x),

- it is of degree r = n k,
- it must be an irreducible polynomial

Introduction	Encoding	Decoding	Linear block codes	Cyclic codes
0000000000	00	000000000000		○○○○●
Decoding				

 \rightarrow

H parity-check matrix

h(x) parity-check polynomial

 \rightarrow

h(x)parity-check polynomial

The parity-check polynomial, h(x),

• it is of degree r' = n - k - 1,

must satisfy

$$(g(x)h(x))_{x^n-1}=0.$$

The parity-check polynomial, h(x),

• it is of degree r' = n - k - 1,

must satisfy

$$(g(x)h(x))_{x^n-1}=0.$$

Just like in regular linear block codes, we can perform **syndrome decoding**,

$$s(x) = (r(x)h(x))_{x^n-1}$$