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(Channel) Coding

Goal

Add redundancy to the transmitted information so that it can be
recovered if errors happen during transmission.

0 → 000

1 → 111
so that, e.g.,

010→ 000 111 000

What should we decide it was transmitted if we receive

010 100 000 ?

000 (instead of 010)!

Example: repetition code
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Digital communications system

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A + n

transmitter receiver

This model can be analyzed at different levels...

Digital channel

Gaussian channel
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Digital channel

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A + n

transmitter receiver

B Digital channel B̂
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Gaussian channel (with digital input)

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A + n

transmitter receiver

A Gaussian channel q
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Some basic concepts

Code
Mapping from a sequence of k bits, b ∈ {b1,b2, · · · }, onto
another one of n > k bits, c ∈ {c1, c2, · · · }.

coding transmission decoding

bi ci
B̂[0], B̂[1], · · ·

or
q[0],q[1], · · ·

b̂

i = 1, · · · , 2k i = 1, · · · , 2k

Probability of error for bi

P i
e = Pr{b̂ 6= bi |b = bi}, i = 1, . . . , 2k

Maximum probability of error: Pmax
e = maxi P

i
e

Rate: The rate of a code is the number of information bits,
k , carried by a codeword of length n.

R = k/n
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Codeword vs bit error probability

Pe : codeword error probability

Pe =
# codewords received incorrectly

overall # codewords
=

v

w

BER (Bit Error Rate): bit error probability

BER =
# incorrect bits

# transmitted bits

(they match if every codeword carries a single information bit)

worst-case scenario → BER = v×k
w×k = Pe

best-case scenario → BER = v×1
w×k = Pe

k

}
⇒ Pe

k
≤ BER ≤ Pe
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Channel coding theorem

Theorem: Channel coding (Shannon, 1948)

If C is the capacity of a channel, then it is possible to reliably
transmit with rate R < C .

Capacity
It is the maximum of the mutual information between

the input and output of the channel.

Reliable transmission
There is a sequence of codes (n, k) = (n, nR) such

that, when n→∞, Pmax
e → 0.
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Channel coding theorem: example

1− p

p

p

1− p

0 0

1 1

C = 1− Hb(p),

being p the channel
BER and Hb the bi-
nary entropy.

Let us consider 4 binary channels with

p = 0.15⇒ C1 = 0.39 p = 0.13⇒ C2 = 0.44
p = 0.17⇒ C3 = 0.34 p = 0.19⇒ C4 = 0.29

and a code with rate R = 1/3 = 0.33.

A code with rate R = 1/3 only respects the Shannon limit in the
first three scenarios.

Channel coding theorem
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Channel coding theorem: example

The figure shows the evolution of the codeword error probability as
a function of n: it approaches 0 when R < C .

Figure: Left: logarithmic scale; right: linear scale
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Definitions

Definition: Redundancy

The number of bits, r = n − k , added by the encoder.

It allows rewriting the rate of the code as R = k
n = n−r

n = 1− r
n

Definition: Hamming distance...

...between two binary sequences is the number of different bits.

It is a measure of how different two sequences of bits are. For instance,
dH(1010, 1001) = 2.

Definition: Minimum distance of a code

dmin = min
i 6=j

dH(ci, cj)
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Coding

In the usual model for a digital communications system,

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A + n

transmitter receiver

the coding scheme is always placed before the system

B Encoder Modulator + Demodulator Detector B̂

n(t) :
AWGN noise with

PSD N0/2

A s(t) r(t) q = A + n

transmitter receiver

Coding scheme
unencoded

bits

and we have
B[0] = C [0]

B[1] = C [1]

...
...

 codeword



Introduction Encoding Decoding Linear block codes Cyclic codes

Index

1 Introduction
Channel models
Fundamentals

2 Encoding

3 Decoding
Hard decoding
Soft decoding
Coding gain

4 Linear block codes
Fundamentals
Decoding

5 Cyclic codes
Polynomials
Decoding



Introduction Encoding Decoding Linear block codes Cyclic codes

Hard decoding

Decoding at the bit level

It relies on the digital channel

B Digital channel B̂

The input to the decoder are bits coming from the Detector ,

the B̂’s.

Metric is the Hamming distance.

Notation

ci =
[
C i [0],C i [1], · · ·C i [n − 1]

]
≡ i-th codeword

r =
[
B̂[0], B̂[1], · · · B̂[n − 1]

]
≡ received word
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Hard decoding: decision rule

Maximum a Posteriori (MAP) rule: we decide ci if

p(ci |r) > p(cj |r) ∀j 6= i

If all the codewords are equally likely, it is equivalent to
Maximum Likelihood (ML),

p(r|ci ) > p(r|cj) ∀j 6= i

Likelihoods can be expressed in terms of dH

p(r|ci ) = εdH (r,ci )(1− ε)n−dH (r,ci )

ε ≡ channel bit error probability

If ε < 0.5 ML rule is tantamount to deciding ci if

dH(r, ci ) < dH(r, cj) ∀j 6= i .
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Hard decoding: error detection vs. correction

Assuming errors happened during transmission, there are two
possible scenarios:

We do not detect them
(we only detect errors if r 6= ci i = 1, . . . , 2k)

We do detect them, in which case we must make a decision:

We don’t risk correct them and request a retransmission
(we cannot correct with confidence)
we try and correct them
(a risk is is involved!!)

We need a policy for the latter scenario: in this course we always
try and fix the errors.
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Hard decoding: detection

We detect a word error when less than dmin bit errors
happen.

Probability of an erroneous codeword going undetected (at
least dmin bit errors)

Pnd ≤
n∑

m=dmin

(
n

m

)
εm(1− ε)n−m

where ε is the bit error probability in the system, and dmin is
the minimum distance between codewords.

...since it might happen that dmin bit errors do not turn a codeword
into another one ⇒ ≤ rather than =

A bound on the probability of error...
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Hard decoding: correction (“always correct” policy)

Decoding is correct if there are less than dmin/2 erroneous bits
⇒ the code can correct up to

t = b(dmin − 1)/2c errors.

Error correction probability:

Pe ≤
n∑

m=t+1

(
n

m

)
εm(1− ε)n−m

...since it is possible to correct more than t errors (there is no
guarantee, though) ⇒ ≤ rather than =

A bound on the probability of error...

The first element in the summation is a good approximation if ε
is small and dmin large.

Approximate bound
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Soft decoding

Decoding at the element from the constellation level

It relies on the Gaussian channel

A Gaussian channel q

with
q = A + n

where n is a Gaussian noise vector.
The input to the decoder are the observations coming from
the Demodulator , the q’s.
Metric is Euclidean distance

Notation

m ≡ # bits carried by every A

c̃i =
[
A(i)[0],A(i)[1], · · ·A(i)[n/m − 1]

]
≡ i-th codeword

r̃ = [q[0],q[1], · · ·q[n/m − 1]] ≡ received word
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Soft decoding: correction

The codeword error probability can be approximated as

Pe ≈ κQ

(
dmin/2√
N0/2

)
(1)

where κ is the kiss number.

Definition: kiss number

It is the maximum number of codewords that are at
distance dmin from any given.
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Coding gain

If we set equal the BER with and without coding, the coding
gain is obtained as

G =
(Eb/N0)nc
(Eb/N0)c

Different for soft and hard decoding

To compute the individual Eb/N0’s, it is often useful...

Q(x) ≈ 1

2
e−

x2

2

Stirling’s approximation
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Coding gain: example

φ1(t)
−
√
Es

√
Es

Let us consider a binary antipodal constellation 2-PAM (±
√
Es),

with the code

bi ci

00 000

01 011

10 110

11 101
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Coding gain: example - hard decoding

This code cannot correct any error since
t = b(dmin − 1)/2c = 0, and the codeword error probability is

Pe ≤
3∑

m=1

(
3

m

)
εm(1− ε)n−m ≈ 3ε

where ε = Q(
√

2Es/N0).

Bit error probability

BER ≈ 2

3
3Q

(√
2Es

N0

)

In order to express it in terms of Eb, we use that 2Eb = 3Es ,
and hence

BER ≈ 2Q

(√
4Eb

3N0

)
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Coding gain: example - soft decoding

We decide b from the output of the Gaussian channel,

q = (q[0],q[1],q[2]) = (A[0] + n[0],A[1] + n[1],A[2] + n[2])

Tantamount to the detector for the constellation−√Es

−
√
Es

−
√
Es

 ,

−√Es√
Es√
Es

 ,

 √Es√
Es

−
√
Es

 ,

 √Es

−
√
Es√
Es


which has minimum (Euclidean) distance dmin = 2

√
2Es

From (1) the codeword error probability is

Pe ≈ 3Q

(√
4Es

N0

)

BER as a function of Eb:
BER ≈ 2Q

(√
8Eb

3N0

)
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Coding gain: example - hard vs soft decoding

Without coding, we have Eb = Es , and

BERnc = ε = Q
(√

2Eb/N0

)

Gain with hard decoding
We set equal BERc and BERnc

Approximation: Q(·)

G =
(Eb/N0)nc
(Eb/N0)c

= 2/3 ≈ −1.76dB

We are actually losing performance!! (expected, since the code
is not able correct any error)

Soft decoding
G = 4/3 ≈ 1.25dB

Now we are making good use of coding
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Linear block codes

a + b = (a + b)2
a · b = (a · b)2

Galois field modulo 2 (GF (2))

Definition: Linear Block Code

A linear block code is a code in which any linear combination
of codewords is also a codeword.

Properties

It is a subspace in GF (2)n with 2k elements.

The all-zeros word is a codeword.

Every codeword has at least another codeword that is at dmin

from it.

dmin is the smallest weight (number of 1s) among the non-null
codewords.
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Linear block codes: structure

Elements in an (n, k) linear block code

b is the message, 1× k

c is the codeword, 1× n

r is the received word, 1× n with

r = c + e

e is the noise 1× n

G is the generator matrix,

(for encoding)

k × n

H is the parity-check matrix,

(for decoding)
n − k × n
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Encoding

The mapping b→ c is performed through matrix multiplication
i.e.,

c = bG.

Keep in mind:

b is 1× k

G is k × n

c is 1× n

Every row of G is a codeword.

Property



Introduction Encoding Decoding Linear block codes Cyclic codes

Encoding

The mapping b→ c is performed through matrix multiplication
i.e.,

c = bG.

Keep in mind:

b is 1× k

G is k × n

c is 1× n

Every row of G is a codeword.

Property



Introduction Encoding Decoding Linear block codes Cyclic codes

Encoding

The mapping b→ c is performed through matrix multiplication
i.e.,

c = bG.

Keep in mind:

b is 1× k

G is k × n

c is 1× n

Every row of G is a codeword.

Property



Introduction Encoding Decoding Linear block codes Cyclic codes

Parity-check matrix

Parity check matrix, H, is the orthogonal complement of G so that

cH> = 0⇔ c is a codeword

For the sake of convenience,

Definition: Syndrome

The syndrome of the received sequence r is

s = rH> (with dimensions 1× (n − k))

Then,
s = 0⇔ r is a codeword.

s = rHT = (c + e)HT =��
�*0

cHT + eHT = eHT

Syndrome-error connection
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Hard decoding: syndrome decoding

The minimum distance rule requires computing dH between the received
word, r, and every codeword...but we can carry out syndrome
decoding

Beforehand:

Fill up a table yielding the syndrome associated with every possible
error,

error (e) syndrome(s)
...

...

(If several errors yield the same syndrome,
choose the one that is most likely, i.e., the
one with the smallest weight)

In operation: given the received word, r:

1 Compute the syndrome s = rHT .
2 Look up the table for the error pattern, e, with that syndrome
3 Undo the error

ĉ = r + e



Introduction Encoding Decoding Linear block codes Cyclic codes

Hard decoding: syndrome decoding

The minimum distance rule requires computing dH between the received
word, r, and every codeword...but we can carry out syndrome
decoding

Beforehand:

Fill up a table yielding the syndrome associated with every possible
error,

error (e) syndrome(s)
...

...

(If several errors yield the same syndrome,
choose the one that is most likely, i.e., the
one with the smallest weight)

In operation: given the received word, r:

1 Compute the syndrome s = rHT .
2 Look up the table for the error pattern, e, with that syndrome
3 Undo the error
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Systematic codes

Definition: Systematic code

A code in which the message is always embedded in the en-
coded sequence (in the same place).

This can be easily imposed through the generator matrix,

G =
[
Ik P

]
or G =

[
P Ik

]
First/last k bits in c are equal to b, and the remaining n − k
are redundancy.
If G =

[
Ik P

]
it can be shown

H =
[
PT In−k

]

Prove it!

Exercise
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Systematic code example: Hamming (7, 4)

generator matrix:

G =


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 1 1 1
0 0 0 1 0 1 1


Parity-check matrix:

H =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1



Every Hamming code:

It’s perfect

dmin = 3

k = 2j − j − 1 and n = 2j − 1 ∀j ∈ N ≥ 2

j = 2→ (3, 1)
j = 3→ (7, 4)
j = 4→ (15, 11)
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j = 2→ (3, 1)
j = 3→ (7, 4)
j = 4→ (15, 11)
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Hamming (7, 4): coding gain

2 4 6 810−5

10−4

10−3

10−2

10−1

hard gain

soft gain

Eb
N0

B
E

R

No coding
Hard decoding
Soft decoding



Introduction Encoding Decoding Linear block codes Cyclic codes

Hamming (7, 4): decoding

Beforehand we apply
s = eHT

over every e that entails a single error (the code can only correct 1
erroneous bit):

error syndrome

0000000 000
1000000 101
0100000 110
0010000 111
0001000 011
0000100 100
0000010 010
0000001 001

s = rH
> = [1100101]


1 0 1
1 1 0
1 1 1
0 1 1
1 0 0
0 1 0
0 0 1

 = [110]

and hence e = [0100000] so that

ĉ = r + e = r = [1000101] .

Example: r = [1100101]
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Equivalent codes

If the code is systematic, we have an easy way of computing the
parity-check matrix...

Computing H from G

...but what if it’s not?

If the code is not systematic, one can apply
operations on the generator matrix, G, to try and transform it into
that of an equivalent systematic code, G′ =

[
Ik P

]
.

Allowed operations are:

On rows replace any row with a linear combination of itself
and other rows or swapping rows.

On columns swapping columns.

Definition: Equivalent codes

Two codes are equivalent if they have the same codewords
(after, maybe, reordering the bits).
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Cyclic codes

Working with matrices is not efficient!!

Large values of k and n

Definition: Cyclic code

It is a linear block code in which any circular shift of a code-
word results in another codeword.

In a cyclic code,

If [c0, c1, . . . , cn−1] is a codeword, then so is
[cn−1, c0, c1, . . . , cn−2]

i.e., every codeword is a (circularly) shifted version of another
codeword.
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Polynomial representation of codewords

Codeword [c0, c1, · · · , cn−1] is represented as the polynomial

c(x) = c0 + c1x + c2x
2 + · · ·+ cn−1x

n−1

How is
[c0, c1, · · · , cn−1]→ [cn−1, c0, · · · , cn−2]

achieved mathematically?

By multiplying c(x) times x modulo
(xn − 1), i.e.,

xc(x) = c0x + c1x
2 + · · ·+ cn−1x

n = c0x + · · ·+ cn−1x
n + cn−1 − cn−1

= cn−1(xn − 1) + cn−1 + c0x + c1x
2 + · · ·+ cn−2x

n−1

Hence,

(xc(x))xn−1 = cn−1 + c0x + c1x
2 + · · ·+ cn−2x

n−1︸ ︷︷ ︸
[cn−1,c0,··· ,cn−2]
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Encoding

G → g(x)
generator

matrix

generator
polynomial

Coding is carried out by multiplying, modulo xn − 1, the
polynomial representing bi by a generator polynomial, g(x),

c(x) = (b(x)g(x))xn−1

The generator polynomial, g(x),

it is of degree r = n − k ,

it must be an irreducible polynomial
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Decoding

H → h(x)
parity-check

matrix

parity-check
polynomial

The parity-check polynomial, h(x),

it is of degree r ′ = n − k − 1,

must satisfy

(g(x)h(x))xn−1 = 0.

Just like in regular linear block codes, we can perform syndrome
decoding,

s(x) = (r(x)h(x))xn−1
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