

Redes de Sensores Estimación

Manuel A. Vázquez Joaquín Míguez Jose Miguel Leiva

4 de febrero de 2024

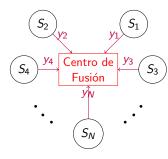
Índice

- Contexto
- Sistema dinámico
- El filtro de Kalman
- 4 El filtro de Kalman con término de control

Índice

- Contexto
- Sistema dinámico
- 3 El filtro de Kalman
- 4 El filtro de Kalman con término de contro

Red para estimación centralizada



Estructura de la red con N sensores (i = 1, ..., N):

- $S_i \equiv \text{sensor } i\text{-}\text{\'esimo}$
- y_i ≡ observación en el sensor i-ésimo

El CF debe utilizar el conjunto de observaciones para estimar un vector \mathbf{x} de dimensiones $M \times 1$.

La estimación de \mathbf{x} dada la colección de datos $\mathbf{y} = \{y_1, ..., y_N\}$ es equivalente a un problema de estimación *clásico*. Hay varios estimadores posibles:

La estimación de \mathbf{x} dada la colección de datos $\mathbf{y} = \{y_1, ..., y_N\}$ es equivalente a un problema de estimación *clásico*. Hay varios estimadores posibles:

Máxima verosimilitud (ML≡ maximum likelihood)

$$\hat{\mathbf{x}}^{ML} = \arg \max_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}).$$

La estimación de \mathbf{x} dada la colección de datos $\mathbf{y} = \{y_1, ..., y_N\}$ es equivalente a un problema de estimación *clásico*. Hay varios estimadores posibles:

Máxima verosimilitud (ML≡ maximum likelihood)

$$\hat{\mathbf{x}}^{ML} = \arg \max_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}).$$

Máximo a posteriori (MAP)

$$\hat{\mathbf{x}}^{MAP} = \arg \max_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}).$$

La estimación de \mathbf{x} dada la colección de datos $\mathbf{y} = \{y_1, ..., y_N\}$ es equivalente a un problema de estimación *clásico*. Hay varios estimadores posibles:

Máxima verosimilitud (ML≡ maximum likelihood)

$$\hat{\mathbf{x}}^{ML} = \arg \max_{\mathbf{x}} p(\mathbf{y}|\mathbf{x}).$$

Máximo a posteriori (MAP)

$$\hat{\mathbf{x}}^{MAP} = \arg \max_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}).$$

Mínimo error cuadrático medio (MMSE)

$$\begin{split} \hat{\mathbf{x}}^{MMSE} &= & \arg\min_{\hat{\mathbf{x}}} \mathbb{E} \left[\|\mathbf{x} - \hat{\mathbf{x}}\|^2 \right] \\ &= & \mathbb{E} \left[\mathbf{x} | \mathbf{y} \right] = \int \mathbf{x} p(\mathbf{x} | \mathbf{y}) d\mathbf{x}. \end{split}$$

Índice

- Sistema dinámico

0000

Un problema más interesante...

¿Y si la variable de interés cambia con el tiempo?

$$\mathbf{x}
ightarrow \mathbf{x}_t$$

siendo t una variable temporal discreta. Si \mathbf{x} era una variable aleatoria, entonces \mathbf{x}_t es un *proceso estocástico*.

Un problema más interesante...

¿Y si la variable de interés cambia con el tiempo?

$$\mathbf{x}
ightarrow \mathbf{x}_t$$

siendo t una variable temporal discreta. Si \mathbf{x} era una variable aleatoria, entonces \mathbf{x}_t es un *proceso estocástico*.

Objetivo

Queremos hacer un **seguimiento** de la evolución de **x** con el tiempo.

Un problema más interesante...

¿Y si la variable de interés cambia con el tiempo?

$$\mathbf{x}
ightarrow \mathbf{x}_t$$

siendo t una variable temporal discreta. Si \mathbf{x} era una variable aleatoria, entonces \mathbf{x}_t es un *proceso estocástico*.

Objetivo

Queremos hacer un **seguimiento** de la evolución de **x** con el tiempo.

Entonces, necesitamos dos ecuaciones

Un problema más interesante...

¿Y si la variable de interés cambia con el tiempo?

$$\mathbf{x}
ightarrow \mathbf{x}_t$$

siendo t una variable temporal discreta. Si \mathbf{x} era una variable aleatoria, entonces \mathbf{x}_t es un *proceso estocástico*.

Objetivo

Queremos hacer un **seguimiento** de la evolución de **x** con el tiempo.

Entonces, necesitamos dos ecuaciones

• una ecuación de estado que modele la evolución de la variable de interés

Un problema más interesante...

¿Y si la variable de interés cambia con el tiempo?

$$\mathbf{x}
ightarrow \mathbf{x}_t$$

siendo t una variable temporal discreta. Si x era una variable aleatoria, entonces \mathbf{x}_t es un proceso estocástico.

Objetivo

Queremos hacer un **seguimiento** de la evolución de **x** con el tiempo.

Entonces, necesitamos dos ecuaciones

- una ecuación de estado que modele la evolución de la variable de interés
- una ecuación de observación que modele la relación entre la variable de interés y lo observado

• El proceso \mathbf{x}_t evoluciona de acuerdo a un modelo lineal y gaussiano

$$\mathbf{x}_t = \mathbf{F} \mathbf{x}_{t-1} + \mathbf{v}_t$$
 (ecuación de estado)

donde ${\bf F}$ es una matriz $M\times M$, y ${\bf v}_t$ es un vector aleatorio $M\times 1$ gaussiano de media ${\bf 0}$ y covarianza ${\bf Q}$, siendo M el número de elementos en ${\bf x}_t$.

• El proceso \mathbf{x}_t evoluciona de acuerdo a un modelo lineal y gaussiano

$$\mathbf{x}_t = \mathbf{F} \mathbf{x}_{t-1} + \mathbf{v}_t$$
 (ecuación de estado)

donde **F** es una matriz $M \times M$, y \mathbf{v}_t es un vector aleatorio $M \times 1$ gaussiano de media **0** y covarianza **Q**, siendo M el número de elementos en x_t .

• La relación entre la variable de interés \mathbf{x}_t y las observaciones viene dada por

$$\mathbf{y}_t = \mathbf{H}\mathbf{x}_t + \mathbf{w}_t$$
 (ecuación de observación)

donde **H** es una matriz $N \times M$ y \mathbf{w}_t es un vector aleatorio $N \times 1$ gaussiano de media **0** y covarianza **R**.

• El proceso \mathbf{x}_t evoluciona de acuerdo a un modelo lineal y gaussiano

$$\mathbf{x}_t = \mathbf{F} \mathbf{x}_{t-1} + \mathbf{v}_t$$
 (ecuación de estado)

donde ${\bf F}$ es una matriz $M\times M$, y ${\bf v}_t$ es un vector aleatorio $M\times 1$ gaussiano de media ${\bf 0}$ y covarianza ${\bf Q}$, siendo M el número de elementos en ${\bf x}_t$.

 La relación entre la variable de interés x_t y las observaciones viene dada por

$$\mathbf{y}_t = \mathbf{H}\mathbf{x}_t + \mathbf{w}_t$$
 (ecuación de observación)

donde \mathbf{H} es una matriz $N \times M$ y \mathbf{w}_t es un vector aleatorio $N \times 1$ gaussiano de media $\mathbf{0}$ y covarianza \mathbf{R} .

Las observaciones...

...dadas por el vector \mathbf{y}_t , recogen las medidas tomadas por todos los sensores

Ejemplo I

Objetivo

Localización y seguimiento de un objeto con velocidad constante y conocida c.

Ejemplo I

Objetivo

Localización y seguimiento de un objeto con velocidad constante y conocida **c**.

• La posición del objetivo, \mathbf{x}_t (que aquí representa el estado del sistema), evoluciona de acuerdo a

$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{c} T + \mathbf{v}_t,$$

donde *T* es el período de muestreo, i.e., el tiempo transcurrido entre dos observaciones consecutivas.

Ejemplo I

Objetivo

Localización y seguimiento de un objeto con velocidad constante y conocida **c**.

• La posición del objetivo, \mathbf{x}_t (que aquí representa el estado del sistema), evoluciona de acuerdo a

$$\mathbf{x}_t = \mathbf{x}_{t-1} + \mathbf{c} T + \mathbf{v}_t,$$

donde T es el período de muestreo, i.e., el tiempo transcurrido entre dos observaciones consecutivas.

• Observamos directamente la posición:

$$\mathbf{y}_t = \mathbf{x}_t + \mathbf{w}_t$$

Ejemplo II

Objetivo

Localización y seguimiento de un objeto con velocidad constante desconocida.

Objetivo

Localización y seguimiento de un objeto con velocidad constante desconocida.

Para estimar la velocidad, la incluimos en el estado del sistema

$$\mathbf{x}_t' = \begin{bmatrix} \mathbf{x}_t \\ \mathbf{c} \end{bmatrix}$$

Ejemplo II

Objetivo

Localización y seguimiento de un objeto con velocidad constante desconocida.

Para estimar la velocidad, la incluimos en el estado del sistema

$$\mathbf{x}_t' = \begin{vmatrix} \mathbf{x}_t \\ \mathbf{c} \end{vmatrix}$$

La ecuación de estado es ahora

$$\mathbf{x}_t' = \mathbf{F} \mathbf{x}_{t-1}' + \begin{bmatrix} \mathbf{v}_t \\ \mathbf{0} \end{bmatrix}, \text{ with } \mathbf{F} = \begin{bmatrix} 1 & 0 & 7 & 0 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

Ejemplo II

Objetivo

Localización y seguimiento de un objeto con velocidad constante desconocida.

Para estimar la velocidad, la incluimos en el estado del sistema

$$\mathbf{x}_t' = \begin{bmatrix} \mathbf{x}_t \\ \mathbf{c} \end{bmatrix}$$

La ecuación de estado es ahora

$$\mathbf{x}_t' = \mathbf{F} \mathbf{x}_{t-1}' + \begin{bmatrix} \mathbf{v}_t \\ \mathbf{0} \end{bmatrix}, \text{ with } \mathbf{F} = \begin{bmatrix} 1 & 0 & 7 & 0 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

• ...y la ecuación de observación

$$\mathbf{y}_t = \mathbf{H}\mathbf{x}_t' + \mathbf{w}_t$$
, with $\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

Índice

- El filtro de Kalman

Es un método recursivo para el cálculo de distribuciones de probabilidad a posteriori en sistemas dinámicos lineales y gaussianos.

 recursivo: nos da una estimación en un determinado instante de tiempo utilizando la estimación del instante anterior (igual que hacen los algoritmos adaptativos).

- recursivo: nos da una estimación en un determinado instante de tiempo utilizando la estimación del instante anterior (igual que hacen los algoritmos adaptativos).
- calcula distribuciones de probabilidad: no nos va a dar una estimación del parámetro de interés sino su distribución (determinada por la media y la matriz de covarianza).

- recursivo: nos da una estimación en un determinado instante de tiempo utilizando la estimación del instante anterior (igual que hacen los algoritmos adaptativos).
- calcula distribuciones de probabilidad: no nos va a dar una estimación del parámetro de interés sino su distribución (determinada por la media y la matriz de covarianza).
- ...en sistemas dinámicos: en sistemas que cambian con el tiempo

- recursivo: nos da una estimación en un determinado instante de tiempo utilizando la estimación del instante anterior (igual que hacen los algoritmos adaptativos).
- calcula distribuciones de probabilidad: no nos va a dar una estimación del parámetro de interés sino su distribución (determinada por la media y la matriz de covarianza).
- ...en sistemas dinámicos: en sistemas que cambian con el tiempo
- lineales: las ecuaciones que modelan el sistema son lineales con respecto a la variable de interés.

- recursivo: nos da una estimación en un determinado instante de tiempo utilizando la estimación del instante anterior (igual que hacen los algoritmos adaptativos).
- calcula distribuciones de probabilidad: no nos va a dar una estimación del parámetro de interés sino su distribución (determinada por la media y la matriz de covarianza).
- ...en sistemas dinámicos: en sistemas que cambian con el tiempo
- lineales: las ecuaciones que modelan el sistema son lineales con respecto a la variable de interés.
- gaussianos: el ruido que afecta a esas mismas ecuaciones es gaussiano.

Sistema dinámico en formato de espacio de estados

$$\mathbf{x}_t = \mathbf{F}_{t-1}\mathbf{x}_{t-1} + \mathbf{v}_t \leftarrow \frac{\text{ecuación de}}{\text{estado}}$$

Sistema dinámico en formato de espacio de estados

$$\mathbf{x}_t = \mathbf{F}_{t-1}\mathbf{x}_{t-1} + \mathbf{v}_t \quad \longleftarrow \quad egin{matrix} \text{ecuación de} \\ \text{estado} \end{matrix}$$

$$\mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{w}_t \qquad \longleftarrow \begin{array}{c} \text{ecuación de} \\ \text{observación} \end{array}$$

Contexto

Sistema dinámico en formato de espacio de estados

Sistema dinámico en formato de espacio de estados

Objetivo

Estimar (recursivamente) el estado del sistema \mathbf{x}_t dadas las observaciones, \mathbf{y}_t

El índice temporal es discreto, i.e. $t = 0, 1, \cdots$

Notación

$$\mathbf{x}_t = \mathbf{F}_{t-1}\mathbf{x}_{t-1} + \mathbf{v}_t$$

- \bullet \mathbf{x}_t es el vector de estado (del sistema) en el instante t
- F_t es la matriz de transición de estado: determina la evolución del estado del sistema
- ullet $oldsymbol{v}_t \sim \mathcal{N}\left(oldsymbol{v}_t | oldsymbol{0}, oldsymbol{Q}_t
 ight)$ es el ruido estado (o de proceso)
 - \mathbf{Q}_t es la matriz de covarianza del ruido de estado (puede ser variante con el tiempo)

Notación

$$\mathbf{x}_t = \mathbf{F}_{t-1}\mathbf{x}_{t-1} + \mathbf{v}_t$$

- \mathbf{x}_t es el vector de estado (del sistema) en el instante t
- F_t es la matriz de transición de estado: determina la evolución del estado del sistema
- ullet $oldsymbol{v}_t \sim \mathcal{N}\left(oldsymbol{v}_t | oldsymbol{0}, oldsymbol{Q}_t
 ight)$ es el ruido estado (o de proceso)
 - \mathbf{Q}_t es la matriz de covarianza del ruido de estado (puede ser variante con el tiempo)

$$\mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{w}_t$$

- \bullet \mathbf{y}_t es el el vector de observaciones
- H_t es la matriz de observaciones: relaciona las observaciones con el estado (desconocido)
- $\mathbf{w}_t \sim \mathcal{N}\left(\mathbf{w}_t | \mathbf{0}, \mathbf{R}_t\right)$ es el ruido de observación
 - **R**_t es la matriz de covarianza del ruido de observación (puede ser variante con el tiempo)

Filtrado: hipótesis de partida

La distribución a priori (inicial) del estado es Gaussiana, i.e.,

$$ho(\mathbf{x}_0) \sim \mathcal{N}\left(\mathbf{x}_0|\hat{\mathbf{x}}_{0|0}, \mathbf{P}_{0|0}
ight)$$

siendo conocidas

- $\hat{\mathbf{x}}_{0|0}$: la media de la distribución del estado en el instante 0
- ullet ${f P}_{0|0}$: matriz de cov. de la distr. del estado <u>en el instante 0</u>

Filtrado: hipótesis de partida

La distribución a priori (inicial) del estado es Gaussiana, i.e.,

$$p(\mathbf{x}_0) \sim \mathcal{N}\left(\mathbf{x}_0|\hat{\mathbf{x}}_{0|0}, \mathbf{P}_{0|0}\right)$$

siendo conocidas

- $\hat{\mathbf{x}}_{0|0}$: la media de la distribución del estado en el instante 0
- $P_{0|0}$: matriz de cov. de la distr. del estado en el instante 0

Notación

- $\hat{\mathbf{x}}_{a|b} \equiv \text{media estimada en el instante } a \text{ utilizando las}$ observaciones hasta el instante b
- $P_{a|b} \equiv$ matriz de covarianza estimada en el instante a utilizando las observaciones hasta el instante b

Filtrado: hipótesis de partida

La distribución a priori (inicial) del estado es Gaussiana, i.e.,

$$p(\mathbf{x}_0) \sim \mathcal{N}\left(\mathbf{x}_0|\hat{\mathbf{x}}_{0|0}, \mathbf{P}_{0|0}\right)$$

siendo conocidas

- $\hat{\mathbf{x}}_{0|0}$: la media de la distribución del estado en el instante 0
- $oldsymbol{\bullet}$ $oldsymbol{\mathsf{P}}_{0|0}$: matriz de cov. de la distr. del estado en el instante 0

Notación

- $\hat{\mathbf{x}}_{a|b} \equiv$ media estimada en el instante a utilizando las observaciones hasta el instante b
- $P_{a|b} \equiv$ matriz de covarianza estimada en el instante a utilizando las observaciones hasta el instante b

Al principio

En el instante 0 no hay ninguna observación disponible...pero la notación sigue siendo conveniente.

Filtrado: recursión

Si se cumple la hipótesis de partida, entonces para $t=1,2,\cdots$

Filtrado: recursión

Si se cumple la hipótesis de partida, entonces para $t=1,2,\cdots$

$$p(\mathbf{x}_t \mid \mathbf{y}_{1:t-1}) \sim \mathcal{N}\left(\mathbf{x}_t | \hat{\mathbf{x}}_{t|t-1}, \mathbf{P}_{t|t-1} \right) \leftarrow \int_{\text{predictiva}}^{\text{fdp}}$$

Filtrado: recursión

Si se cumple la hipótesis de partida, entonces para $t=1,2,\cdots$

$$p(\mathbf{x}_t \mid \mathbf{y}_{1:t-1}) \sim \mathcal{N}\left(\mathbf{x}_t | \hat{\mathbf{x}}_{t|t-1}, \mathbf{P}_{t|t-1}\right) \leftarrow \begin{array}{c} \mathrm{fdp} \\ \mathrm{predictiva} \end{array}$$
 $p(\mathbf{x}_t \mid \mathbf{y}_{1:t}) \sim \mathcal{N}\left(\mathbf{x}_t | \hat{\mathbf{x}}_{t|t}, \mathbf{P}_{t|t}\right) \leftarrow \mathrm{fdp} \mathrm{filtrada}$

...esto es, ambas fdp's son Gaussianas si la distribución inicial es Gaussiana, y el **filtro de Kalman** nos da sus medias y covarianzas en un proceso que involucra dos etapas...

Notación

$$y_{i:j} \equiv \{y_i, y_{i+1}, \cdots, y_j\}$$

Solución

Etapa predictiva

Solución

Etapa predictiva

$$\begin{aligned} \hat{\mathbf{x}}_{t|t-1} &= \mathbf{F}_{t-1} \hat{\mathbf{x}}_{t-1|t-1} &\longleftarrow \text{ media predictiva } \\ \mathbf{P}_{t|t-1} &= \mathbf{Q}_{t-1} + \mathbf{F}_{t-1} \mathbf{P}_{t-1|t-1} \mathbf{F}_{t-1}^H &\longleftarrow \text{ covarianza predictiva } \end{aligned} \right\} \quad \text{asociadas a la fdp}$$

Etapa de actualización

$$\begin{aligned} \mathbf{K}_t &= \mathbf{P}_{t|t-1} \mathbf{H}_t^H \left(\mathbf{H}_t \mathbf{P}_{t|t-1} \mathbf{H}_t^H + \mathbf{R}_t \right)^{-1} &\longleftarrow \text{ganancia de Kalman} \\ \hat{\mathbf{x}}_{t|t} &= \hat{\mathbf{x}}_{t|t-1} + \mathbf{K}_t \left(\mathbf{y}_t - \mathbf{H}_t \hat{\mathbf{x}}_{t|t-1} \right) &\longleftarrow \text{media filtrada} \\ \mathbf{P}_{t|t} &= \left(\mathbf{I} - \mathbf{K}_t \mathbf{H}_t \right) \mathbf{P}_{t|t-1} &\longleftarrow \text{covarianza filtrada} \end{aligned} \right\}^{\text{asociadas a la}}$$

• Para poder aplicar el KF

¹...porque una gaussiana está completamente determinada por su media y matriz de covarianza.

- Para poder aplicar el KF
 - el sistema tiene que ser lineal

¹...porque una gaussiana está completamente determinada por su media y matriz de covarianza.

- Para poder aplicar el KF
 - el **sistema** tiene que ser **lineal**
 - el **ruido** tiene que ser **gaussiano**

¹...porque una gaussiana está completamente determinada por su media y matriz de covarianza.

- Para poder aplicar el KF
 - el sistema tiene que ser lineal
 - el **ruido** tiene que ser **gaussiano**
 - la distribución inicial del estado tiene que ser gaussiana

¹...porque una gaussiana está completamente determinada por su media y matriz de covarianza.

- Para poder aplicar el KF
 - el sistema tiene que ser lineal
 - el ruido tiene que ser gaussiano
 - la distribución inicial del estado tiene que ser gaussiana
- El KF nos da (como salida) una distribución de probabilidad¹, que contiene toda la información acerca del parámetro de interés

En nuestro caso...

 $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$ contiene toda la información disponible en el instante t acerca de \mathbf{x}_t , y a partir de ella podemos obtener la media, mediana, moda...

^{1...}porque una gaussiana está completamente determinada por su media y matriz de covarianza.

- Para poder aplicar el KF
 - el sistema tiene que ser lineal
 - el ruido tiene que ser gaussiano
 - la distribución inicial del estado tiene que ser gaussiana
- El KF nos da (como salida) una distribución de probabilidad¹, que contiene toda la información acerca del parámetro de interés

 $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$ contiene toda la información disponible en el instante t acerca de \mathbf{x}_t , y a partir de ella podemos obtener la media, mediana, moda...

• $\hat{\mathbf{x}}_{t|t} \equiv \text{estimador MMSE del estado en el instante } t$

^{1...}porque una gaussiana está completamente determinada por su media y matriz de covarianza.

- Para poder aplicar el KF
 - el sistema tiene que ser lineal
 - el ruido tiene que ser gaussiano
 - la distribución inicial del estado tiene que ser gaussiana
- El KF nos da (como salida) una distribución de probabilidad¹, que contiene toda la información acerca del parámetro de interés

En nuestro caso...

 $p(\mathbf{x}_t \mid \mathbf{y}_{1:t})$ contiene toda la información disponible en el instante t acerca de \mathbf{x}_t , y a partir de ella podemos obtener la media, mediana, moda...

- $\hat{\mathbf{x}}_{t|t} \equiv \text{estimador MMSE del estado en el instante } t$
- ullet Tr $\{{f P}_{t|t}\} \equiv$ error mínimo (valor del error cuadrático en $\hat{f x}_{t|t})$

^{1...}porque una gaussiana está completamente determinada por su media y matriz de covarianza.

Índice

- 4 El filtro de Kalman con término de control

Ecuaciones de estado y observación

$$\mathbf{x}_t = \mathbf{F}_{t-1} \mathbf{x}_{t-1} + \mathbf{B}_t \mathbf{u}_t + \mathbf{v}_{t-1} \leftarrow egin{array}{l} ext{ecuación de} \\ ext{estado} \end{array}$$
 $\mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{w}_t \leftarrow egin{array}{l} ext{ecuación de} \\ ext{observación} \end{array}$

El término de control, $B_t u_t$, con

- B_t es la matriz de control, y
- u_t el vector de control

es **conocido** (en todo instante de tiempo t) y es un mecanismo para modificar el estado (desconocido).

¿Para qué sirve el término de control?

 ...a veces podemos ejercer un cierto control sobre aquello que queremos estimar

example

Problema: estimar la trayectoria de un dron que nosotros mismos manejamos

²...por lo que debe figurar en dicha ecuación!!

¿Para qué sirve el término de control?

 ...a veces podemos ejercer un cierto control sobre aquello que queremos estimar

example

Problema: estimar la trayectoria de un dron que nosotros mismos manejamos

• ...desde un punto de vista matemático, es útil para modelar funciones *afines*

²...por lo que debe figurar en dicha ecuación!!

¿Para qué sirve el término de control?

 ...a veces podemos ejercer un cierto control sobre aquello que queremos estimar

example

Problema: estimar la trayectoria de un dron que nosotros mismos manejamos

• ...desde un punto de vista matemático, es útil para modelar funciones *afines*

El término de control es algo que afecta al estado², pero que no es necesario estimar porque es conocido.

²...por lo que debe figurar en dicha ecuación!!

Solución

Etapa predictiva

$$\hat{\mathbf{x}}_{t|t-1} = \mathbf{F}_{t-1}\hat{\mathbf{x}}_{t-1|t-1} + \mathbf{B}_t\mathbf{u}_t \qquad \qquad \text{media predictiva} \\ \mathbf{P}_{t|t-1} = \mathbf{Q}_{t-1} + \mathbf{F}_{t-1}\mathbf{P}_{t-1|t-1}\mathbf{F}_{t-1}^H \qquad \qquad \text{covarianza predictiva}$$

Etapa de actualización

$$\begin{split} \mathbf{K}_t &= \mathbf{P}_{t|t-1} \mathbf{H}_t^H \left(\mathbf{H}_t \mathbf{P}_{t|t-1} \mathbf{H}_t^H + \mathbf{R}_t \right)^{-1} & \longleftarrow \text{ ganancia de Kalman } \\ \hat{\mathbf{x}}_{t|t} &= \hat{\mathbf{x}}_{t|t-1} + \mathbf{K}_t \left(\mathbf{y}_t - \mathbf{H}_t \hat{\mathbf{x}}_{t|t-1} \right) & \longleftarrow \text{ media filtrada } \\ \mathbf{P}_{t|t} &= \left(\mathbf{I} - \mathbf{K}_t \mathbf{H}_t \right) \mathbf{P}_{t|t-1} & \longleftarrow \text{ covarianza filtrada} \end{split} \right\}^{\text{ asociadas a la fdp filtrada}}$$