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Sensors networks

area of interest
sensor

‘

center

@ WSN (wireless sensor network): collection of sensor nodes
deployed in a certain area of interest to monitor a physical
phenomenon.

@ Sensor/Node: device with sensing, processing, data storing
and communication capabilities.

@ Skills: cooperation, adaptability, self-organization, robustness.

@ Fusion center: device which integrates the data produced by
the sensor nodes.
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Applications

@ Military: command, control, communications, surveillance,

exploration, detection/tracking of targets

Health /medicine: monitorization, diagnosis, assistance, e.g.,
o CodeBlue and Vital Dust, devices that monitor heart beat,

oxygen levels, electrocardiogram, and send them to a
smartphone

Civil engineering, e.g.,
e Smart Buildings
e Smart Cities.
@ Environmental monitoring, e.g.,
e Princeton’s Zebranet Project
e meteorological sensors network deployed in Big Island, Hawaii.
e sensors network monitoring infrasonic waves in Tungurahua
volcano, Ecuador.

Agriculture, e.g.,
o Intel’s Wireless Vineyard.


https://www.researchgate.net/figure/WSNs-used-in-Military-Applications_fig1_4365726
https://www.researchgate.net/publication/301660361_Impact_of_Wireless_Channel_Model_on_802156_Standard_Performance_for_Wireless_Body_Sensor_Networks
https://blog.amerlux.com/5-reasons-you-should-invest-in-a-building-automation-system
https://www.e-zigurat.com/blog/en/internet-things-one-building-blocks-smart-city/
http://www.princeton.edu/~mrm/sensys04.pdf
https://ieeexplore.ieee.org/abstract/document/1265198?casa_token=4LZIynt79SQAAAAA:Jn2SvPOBveWTy2gCPfLWrolK9LZaNdUUKsvsGKOdQRLZPg-BiNXb-HC_0Gg5zH4AJy8wG1lv
https://www.itu.int/itunews/manager/display.asp?lang=en&year=2008&issue=08&ipage=24&ext=html
https://www.researchgate.net/publication/224346015_An_address-based_routing_scheme_for_static_applications_of_wireless_sensor_networks
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@ Communications: broadcast and multicast.

@ Control commands from the FC to the sensors. Data from the

sensors to the FC.



Structure/ Topology
[e] Jele}

Hierarchical structure

Point-to-point communications between FCs.
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Structure in series

@ S; = i-th sensor, d;i = data/measure from the i-th sensor,
L; = output from local processor in the i-th sensor, G =
global output

@ Recursive processing: L; = ¢(L;—1,d;)
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Mesh structure

Multi-hop communication

Fusion
center

Point-to-point communications and routing techniques.
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Finding the optimal path

In an ad-hoc network, the path that is going to be used to
communicate any couple of nodes must be known beforehand.

@ Due to energy constraints, nodes A and B should
communicate with each other following the least costly route.

Problem with combinatorial complexity.

Djikstra algorithm.
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Djikstra algorithm

@ We start with a fully connected graph in which every edge has
a certain cost.

@ The cost of connecting A and B is given by the sum of the
costs of all connections in the path that joins them.
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Djikstra algorithm

@ Three kinds of nodes: the current node (CN), the nodes, and
the non-inspected nodes.

@ Initialization:

o the starting node, A, is set as the current node (CN), and its
accumulated cost is 0

e every other node is marked as non-inspected, and the overall
cost of reaching it is co (not indicated explicitly, but left blank
to avoid clutter)

@ Repeat:

e we compute the distance from the CN to every one of its
neighbors that is non-inspected; if for a certain node the
computed distance is smaller than the current accumulated
distance (overall cost of reaching it), the latter is replaced.

e we mark the current node as

e the new CN is that node among the non-inspected ones with
the smallest cost.

while B has not been marked as
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Example

@ The goal is to find the smallest-cost route between A (sensor
S1) and B (sensor 7).
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Example

Initialization
@ We designate the starting node Sy as current node (CN).
@ The overall cost of reaching any other node is cc.
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Example

@ We compute the distances to its neighbors.
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Example

4
@ We mark S; as inspected.

@ Among the non-inspected nodes, S is the one with smallest
cost: it is the next CN.
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Example

@ We compute the accumulated distances up to S; (3+ 1 = 4),
Se (3+2=05)and 57 (3+8=11).
@ Since the new distance to S, is smaller than the one

previously obtained (the path S; — S4 — S has a lower cost
than S; — S,), the latter is overwritten.
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Example

@ Nodes S, and S3 are the ones with the smaller cost among
the non-inspected.

@ We choose either one of them as the next CN, S, for instance.
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Example

@ We compute the distance up to Ss, which is the only
non-inspected neighbor of S,.
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Example

4
57
@ We set 53 as CN and compute the distance accumulated up
to Se. Since the resulting cost is larger than the one
previoulsy obtained, we ignore it.
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Example

4 5
o We set S5 as CN.

@ We update the distance up to S7, which is smaller than the
one previously obtained.
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Example

o We set S5 as CN.

@ The distance up to S7 is no smaller than the previous one.
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Example

@ In the following step, node S7 would be marked as inspected,
and the algorithm ends here.

@ The path with the smallest cost is 51 — S4 — S¢ — 57.
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Centralized detection network

Structure of a network with
{2 N sensors (i =1, ..., N)

u i -
d e 4 | Fusion (_@% ds @ S; = i-th sensor
center

u i = observation in
the i-th sensor
e u; € {0,1} = decision
in the /-th sensor
o up€{0,1} =

Basic diagram for a wireless sensors decision in the FC.
network.

dy



Detection
(o] o]

Local processing

@ Sensor S;, i € {1, ..., N}, records observation d; and must decide
between the hypothesis

e Hy: the phenomenom of interest is not present
e Hjy: the phenomenom of interest is indeed present

u;i = x & S; "believes” Hy is the correct hypothesis
@ Hy is the “null hypothesis”, Hj is the “alternative hypothesis”

@ From d}, statistic t;(d;) is computed to make a decision.
Observation d; is random, whereas t; is a deterministic function of
d;.

@ The output of the binary test is u; € {0,1}:

0, if ti(d) < Bi
YT 1, 0 (d) > B

where f3; is the threshold of the test. If t;(d;) € R, then the
probability of t;(d;) = 8; is 0.
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Local processing: parameters of interest

The parameters of interest for the i-th test (in the corresponding
sensor) are:

@ the probability of false alarm

a; = P{u; = 1|Ho} = P{t;i(d;) > Bi|Ho},
@ the probability of detection

~i = P{u; = 1|H1} = P{ti(d;) > Bi|H1},
@ the probability of missing

Ej = IP’{u,- = 0|H1} = P{t,'(d,') < ﬁ;|H1}.
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@ Sensors transmit their local decisions to the fusion center (FC) in
the network. In the FC, the “observation” is the vector

]
u=| : | e{o, 1}V
un

@ The FC processes vector u to obtain a global output uy € {0,1}.

@ Let P{Hi|u} be the probability of hypothesis Hy (k € {0,1}) being
true given the decision vector u. The optimal Bayesian test is:

Ll():o
P{Holu} "= P{Hi[u}
up=

or, equivalently,

y _{ 0 if P{Ho|u}/P{H;|u} > 1
O7 1 if P{Holu}/P{H;|u} < 1
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Data fusion Il

@ Using Bayes theorem, we can write the posterior probability of
hypothesis Hy as

P{u[Hi }P{H}
P{u} ’

where P{H,} is the posterior probability of hypothesis H.

P{Hk|u} =

@ If we define the threshold (; as the ratio of prior probabilities
Bo = P{Ho}/P{Hi},
and statistic T(u) as the ratio of likelihoods
T(u) = P{u[H1}/P{ulHo}
then we can rewrite the optimal Bayesian test as

B 1 ifT(u)>ﬁ()
”0_{0 if T(u) < fo
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Data fusion Il

In summary, in order to make the global decision we need

@ a global threshold, By, which depends on:
o the (prior) probability of Hy, P{Ho}
o the (prior) probability of Hy, P{H;}

(notice they are complementary, i.e., P{Hp} + P{H;} = 1)

@ the statistic T(u), which depends on
o the likelihood of Hy, P{u|Hy}
o the likelihood of Hy, P{u|H;}

If the local decisions are (conditionally) independent, then the
statistic T(u) can be written in terms of the parameters of the
local tests

_ Plulth} _ TTi P{uilHi}
P{ulHo}  TTL, P{ui|Ho}

T(u)
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Data fusion: parameters of interest

@ The parameters of the test are
P{up = 1|Ho} = probability of false alarm
P{uy = 1|H1} = probability of detection
P{up = 0|H1} = probability of missing

o

Y =
€0
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Example

target
S1 ) S2
O O O
O O
S3 S4

@ All the sensors are identical and hence have the same
probability of false alarm, a; = a = 1073.

@ Sensors at different distances from the target, and hence
1 =0.9, 72 =0.7, y3 = 0.5 and 74 = 0.3.

o Let us assume P{H;} = 1073,
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@ Threshold is given by
Bo = P{Ho}/P{H:} = 0.999/0.001 ~ 10°.

@ Assuming u = [1,0,0, 1]T, let us determine the global
decision uy,

T(u) _ P{U|H1} _ H?:l IP){Ui“_ll}
P{ulHo} [T, P{ui|Ho}
_ P{un|H }P{uz|H1 }P{us| Hi }P{ua|H }
™ P{u1|Ho }P{ua|Ho }P{us| Ho }P{ua| Ho}
. n €2 €3 T4
N a1 (1 — 042) (1 — 043) (67}
09 (1-07)(1-05) 03
~ 103 0.999 0.999 103
=4.05x 10* > By = up = 1.
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e Assuming u = [0,1,0,0]", let us determine the global
decision up,

€1 V2 €3 €4
T = o) o (1= as) (1~ aa)
~ 01 (0.7)(1-05)(1-0.3)
T 0.99910-3 0.999 0.999
=24.57 < By — up = 0.
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Neyman-Pearson lemma

Lemma: Neyman-Pearson

Let us consider the problem of choosing between two hypothesis
Ho and H; using a collection of data D. The test evaluating the
ratio of likelihoods

_ P{D|Hy}
P{D[Ho}’

with constant probability of false alarm « (associated with a deci-

sion threshold 3), maximizes the probability of detection ~.

(D)

@ The optimal Bayesian test belongs to the Neyman-Pearson class,
and hence it maximizes the probability of detection 7.

@ For a fixed probability of false alarm «; = a Vi, the probability of
global detection y is maximized using optimal local test in every
sensor.
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