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Centralized estimation network
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Structure of the network with N
sensors (i = 1, ...,N):

Si ≡ i-th sensor

yi ≡ observation coming
from the i-th sensor

The FC must use the collection of observations to estimate an
M × 1 vector, x.
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Classic estimation

Estimation of x given the collection of data y = {y1, ..., yN} is
tantamount to a classic estimation problem. There are several
possible estimators:

Maximum likelihood (ML)

x̂ML = arg max
x

p(y|x).

Maximum a posteriori (MAP)

x̂MAP = arg max
x

p(x|y).

Minimum Mean Square Error (MMSE)

x̂MMSE = arg min
x̂

E
[
‖x− x̂‖2

]
= E [x|y] =

∫
xp(x|y)dx.
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Dynamic model

A more interesting problem...

What if the variable of interest changes with time?

x→ xt

with t being a discrete-time index. Since x was a random variable,
xt is a random process.

Goal

We want to track the evolution of x with time.

Then, we need two equations

a state equation modeling the evolution of the variable of
interest
a observation equation modeling the connection between the
variable of interest and the observations

Let us start by considering an easy-to-handle model...
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Linear Gaussian model

Process xt evolves according to a linear Gaussian model

xt = Fxt−1 + vt (state equation)

where F is a M ×M matrix, and vt is a M × 1 Gaussian
random vector with mean 0 and covariance Q, being M the
number of elements in xt .

Connection between the variable of interest xt and the
observations is given by

yt = Hxt + wt (observation equation)

where H is a N ×M matrix and wt is a N × 1 Gaussian
random vector with mean 0 and covariance R.

...vector, yt , collects the measurements from all the sensors

Observations...
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Example I

Goal

Localization and tracking of an object moving with a known
constant velocity c.

The position of the target, xt (here representing the state of
the system), evolves according to

xt = xt−1 + cT + vt ,

where T is the sampling period, i.e., the time elapsed between
two consecutive observations.

The position is observed directly:

yt = xt + wt
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Example II

Goal

Localization and tracking of an object moving with constant
unknown velocity.

In order to estimate the velocity, it is in-
cluded in the state of the system x′t =

[
xt
c

]
The state equation is now

x′t = Fx′t−1 +

[
vt
0

]
, with F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 ,

and the observation equation

yt = Hx′t + wt , with H =

[
1 0 0 0
0 1 0 0

]
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What is the Kalman filter?

It is a recursive method for computing posterior probability
distributions in linear Gaussian dynamic systems.

recursive: at every time instant it yields an estimate based on
the one from the previous time instant

probability distributions: it does not (only) give us an estimate
of the parameter of interest, but rather its full distribution
(determined by the mean and the covariance matrix)

dynamic systems: systems that model a time-varying
magnitude

linear: the equations defining the system are linear with
respect to the variable of interest

Gaussian: the noise affecting the above equations is Gaussian.
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Dynamic system in state-space form

xt = Ft−1xt−1 + vt ←− state
equation

yt = Htxt + wt ←− observation
equation


dynamic system in
state-space form

Goal

Recursively estimate the state of the system xt given the
observations, yt

The time index is discrete, i.e, t = 0, 1, · · ·



Overview Dynamic system Kalman filter Kalman filter with control term

Notation

xt = Ft−1xt−1 + vt

xt is the (system) state vector at time t

Ft is the state transition matrix: it determines the evolution
of the state of the system
vt ∼ N (vt |0,Qt) is the state (or process) noise

Qt is the covariance matrix for the state noise (it might be
time-varying)

yt = Htxt + wt

yt is the observations vector

Ht is the observation matrix: it connects the observations
with the (unknown) state
wt ∼ N (wt |0,Rt) is the observation noise

Rt is the covariance matrix of the observation noise (it might
be time-varying)
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Filtering: initial hypothesis

The prior (initial) distribution of the state is Gaussian, i.e.,

p(x0) ∼ N
(
x0|x̂0|0,P0|0

)
with known

x̂0|0: the mean for the distribution of the state at time 0
P0|0: covariance matrix for the distr. of the state at time 0

x̂a|b ≡ mean estimated at time a using the observations up
to time b

Pa|b ≡ covariance matrix estimated at time a using the
observations up to time b

Notation

At time 0 we have no observations available...but the notation is
still convenient.

In the beginning
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Filtering: recursion

If the initial hypothesis holds then, for t = 1, 2, · · ·

p(xt | y1:t−1) ∼ N
(
xt |x̂t|t−1,Pt|t−1

)
←− predictive

pdf

p(xt | y1:t) ∼ N
(
xt |x̂t|t ,Pt|t

)
←− filtered pdf

...that is, both pdf’s are Gaussian if the initial distribution is
Gaussian, and the Kalman filter yields both its means and
covariances in a two-steps process

yi :j ≡ {yi , yi+1, · · · , yj}
Notation
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Solution

Predictive step

x̂t|t−1 = Ft−1x̂t−1|t−1 ←− predictive mean

Pt|t−1 = Qt−1 + Ft−1Pt−1|t−1FH
t−1 ←− predictive covariance

}
associated with the

predictive pdf

Update step

Kt = Pt|t−1HH
t

(
HtPt|t−1HH

t + Rt

)−1 ←− Kalman gain

x̂t|t = x̂t|t−1 + Kt

(
yt −Ht x̂t|t−1

)
←− filtered mean

Pt|t = (I−KtHt) Pt|t−1 ←− filtered covariance


associated with

the filtered pdf
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Remarks

In order to apply the KF

the system must be linear
the noise must be Gaussian
the initial distribution of the state must be Gaussian

KF outputs the a probability distribution1, which contains all
the available information about the parameter of interest

p(xt | y1:t) contains all the available information at time t
about xt , and from it we can compute the mean, median,
mode...

In our case...

x̂t|t ≡ MMSE estimate of the state at time t

Tr
{

Pt|t
}
≡ minimum error (square error at x̂t|t)

1...since a Gaussian distribution is fully specified by its means vector and
covariance matrix
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State and observation equations

xt = Ft−1xt−1 + Btut + vt−1 ←− state
equation

yt = Htxt + wt ←− observation
equation

The control term, Btut , with

Bt is the control-input, and

ut is the control vector

is known (at every time instant t) and meant for modifying the
(unknown) state.
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What is the control term good for?

...sometimes we can have some impact (control) over
whatever we aim at estimating

Problem: estimating the trajectory of a drone we are handling
ourselves

example

...from a mathematical standpoint, it is useful to model affine
functions

The control term is something that affects the state2, but since it
is known there is no need to estimate it.

2...so it should be in the corresponding equation!!
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Solution

Predictive step

x̂t|t−1 = Ft−1x̂t−1|t−1+Btut ←− predictive mean

Pt|t−1 = Qt−1 + Ft−1Pt−1|t−1FH
t−1 ←− predictive covariance

}
associated with the

predictive pdf

Update step

Kt = Pt|t−1HH
t

(
HtPt|t−1HH

t + Rt

)−1 ←− Kalman gain

x̂t|t = x̂t|t−1 + Kt

(
yt −Ht x̂t|t−1

)
←− filtered mean

Pt|t = (I−KtHt) Pt|t−1 ←− filtered covariance

 associated with

the filtered pdf
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