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Centralized estimation network

@ Ya | Fusion
Center

=)

Structure of the network with N
sensors (i =1,..., N):
@ S; = i-th sensor

@ y; = observation coming
from the i-th sensor

The FC must use the collection of observations to estimate an

M x 1 vector, x.
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Classic estimation

Estimation of x given the collection of data 'y = {y1,...,yn} is
tantamount to a classic estimation problem. There are several
possible estimators:

e Maximum likelihood (ML)

%ML — arg max p(y|x).
X

e Maximum a posteriori (MAP)

MAP — arg max p(x|y).
X

@ Minimum Mean Square Error (MMSE)

KMMSE - — arominE [lIx — >A<H2]
X

— Elxly = [ xplxly)dx.
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Dynamic model

A more interesting problem...

What if the variable of interest changes with time?
X — Xt

with t being a discrete-time index. Since x was a random variable,
Xt is @ random process.

We want to track the evolution of x with time.

Then, we need two equations
@ a state equation modeling the evolution of the variable of
interest

.

@ a observation equation modeling the connection between the
variable of interest and the observations
Let us start by considering an easy-to-handle model...
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Linear Gaussian model

@ Process x; evolves according to a linear Gaussian model
x¢ = Fx¢_1 + v; (state equation)

where F is a M x M matrix, and v; is a M x 1 Gaussian
random vector with mean 0 and covariance Q, being M the
number of elements in x;.

@ Connection between the variable of interest x; and the
observations is given by

y: = Hx: + wy (observation equation)

where H is a N x M matrix and w; is a N x 1 Gaussian
random vector with mean 0 and covariance R.

gObservations...

...vector, y;, collects the measurements from all the sensors
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Example |

Localization and tracking of an object moving with a known
constant velocity c.

@ The position of the target, x; (here representing the state of
the system), evolves according to

Xt = Xp—1 + €T + vy,

where T is the sampling period, i.e., the time elapsed between
two consecutive observations.

@ The position is observed directly:

Yi = X¢ + W
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Example Il

Localization and tracking of an object moving with constant
unknown velocity.

In order to estimate the velocity, it is in- .
cluded in the state of the system X, = [(j
@ The state equation is now
10 7T O
I el Vi . 101 0 T
xt—Fxt1+{0],W|th F= 00 1 ol
0 0 0 1
@ and the observation equation
s . |1 00O
y: = Hx; 4+ w;, with H = [0 10 0
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is the Kalman filter?

It is a recursive method for computing posterior probability
distributions in linear Gaussian

recursive: at every time instant it yields an estimate based on
the one from the previous time instant

probability distributions: it does not (only) give us an estimate
of the parameter of interest, but rather its full distribution
(determined by the mean and the covariance matrix)

: systems that model a time-varying
magnitude
linear: the equations defining the system are linear with
respect to the variable of interest

Gaussian: the noise affecting the above equations is Gaussian.
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Dynamic system in state-space form

state

Xt = Feaxe1 4 ve equation

dynamic system in
state-space form

observation
equation

y: = Hexe + wy

Recursively estimate the state of the system x; given the
observations, y;

The time index is discrete, i.e, t =0,1,---
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Notation

Xt = Fro1Xt—1 + v¢

@ X; is the (system) state vector at time ¢t
@ F; is the state transition matrix: it determines the evolution
of the state of the system
o vi ~ N (v¢]0,Qy) is the state (or process) noise
e Q; is the covariance matrix for the state noise (it might be
time-varying)

y: = Hexe + wy

@ y; is the observations vector
o H; is the . it connects the observations
with the (unknown) state
e w; ~ N (w;|0,R;) is the observation noise
o R; is the covariance matrix of the observation noise (it might
be time-varying)
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Filtering: initial hypothesis

The prior (initial) distribution of the state is Gaussian, i.e.,
p(x0) ~ N (xo|%oj0; Pojo)
with known

® Xo|o: the mean for the distribution of the state at time 0
@ Pgo: covariance matrix for the distr. of the state at time 0

Notation

@ X, = mean estimated at time a using the observations up
to time b

o P,;, = covariance matrix estimated at time a using the
observations up to time b

@ In the beginning

At time 0 we have no observations available...but the notation is
still convenient.
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Filtering: recursion

If the initial hypothesis holds then, for t =1,2,---

o redictive
p(xe | yie-1) ~ N (xelReje_1,Pejeo1) «— o

p(xe | y1.e) ~ N (Xt\f(t\t, Pt|t) «— filtered pdf
...that is, both pdf's are Gaussian if the initial distribution is

Gaussian, and the Kalman filter yields both its means and
covariances in a two-steps process

Notation

Yiij = {vi> Yig1, -+ ayj}
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Solution

Predictive step

Xt|t—1 = Ft—lxt—l‘t—l < predictive mean associated with the

Pt|t—1 = Qtfl + Ft—l Pt—1|t—1 Fi‘-l—l {—— predictive covariance predictive pdf

Update step

-1
Kt = Pt‘tle{-l (Htpt|t,1H£_I + Rt) <— Kalman gain

ﬁt|t = ﬁt|t71 + K (Yt - Ht)A(t|t,1) {—  filtered mean

associated with

the filtered pdf
Pt|t = (l - Kth) Pt|t_]_ <—— filtered covariance
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RENMENS

@ In order to apply the KF

o the system must be linear
o the noise must be Gaussian
o the initial distribution of the state must be Gaussian

o KF outputs the a probability distribution®, which contains all
the available information about the parameter of interest

In our case...

p(x¢ | y1:t) contains all the available information at time t
about x;, and from it we can compute the mean, median,
mode...

@ Xy = MMSE estimate of the state at time ¢

° Tr{Pt|t} = minimum error (square error at ;)

! . since a Gaussian distribution is fully specified by its means vector and
covariance matrix
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State and observation equations

state

X: = Fr_1X4— B:u Vi1 — .
t t—1X¢—1 + Bruy + Vi3 equation

observation
ye = Hexe +we equation
The control term, B;u;, with
@ B; is the control-input, and
@ u; is the control vector

is known (at every time instant t) and meant for modifying the
(unknown) state.
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What is the control term good for?

@ ...sometimes we can have some impact (control) over
whatever we aim at estimating

Wexample

Problem: estimating the trajectory of a drone we are handling
ourselves

o ...from a mathematical standpoint, it is useful to model affine
functions

The control term is something that affects the state?, but since it
is known there is no need to estimate it.

2 _so it should be in the corresponding equation!!
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Solution

Predictive step

f(t‘tfl - thlﬁtfl\tfl+Btut {—  predictive mean

associated with the

Pt‘ t—1 — Qtfl + thlptfl‘tlei_lf]_ <{—— predictive covariance predictive pdf

Update step

-1
Ke = Pt\tleﬁ (Htpt tlei—I + Rt) <  Kalman gain
A A A associated with
Xt = X¢|g—1 T K: ()/t - Htxt\t71> € filtered mean the filtered pdf

Pt r = (l — Kth) Pt‘tfl <—— filtered covariance
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