Low-density Parity-Check Codes over the Binary Erasure Channel

Pablo M. Olmos
Manuel A. Vázquez

March 6, 2024

Index

(1) Binary Erasure Channel (BEC)
(2) Classical channel coding approach
(3) Modern channel coding
(4) Low-density Parity-Check codes

Index

(1) Binary Erasure Channel (BEC)

(2) Classical channel coding approach

3 Modern channel coding

4 Low-density Parity-Check codes

The binary erasure channel (BEC)

The model is very simple, but even so...

- quite surprisingly, most properties and statements that we encounter in our investigation of LDPC codes over the BEC hold in much greater generality (R . Urbanke and T . Richardson, Modern Coding Theory) and, moreover,
- erasure correcting codes are used in the link layer of some communications standards.

BEC: practical considerations

Uncoded transmission

Channel bit error probability $\equiv \epsilon$

Transmission of encoded bits

The rate of the code is still $R=\frac{k}{n}$

Channel coding theorem

We can attain a vanishing (codeword) error probability,

$$
P(\hat{\mathbf{c}} \neq \mathbf{c} \mid \mathbf{r}) \rightarrow 0,
$$

when $n \rightarrow \infty$ if the code rate is below the capacity, i.e.,

$$
R<C
$$

- You don't want that...

Using $n \rightarrow \infty$ is a waste of resources (time, energy)

Goal

...to design feasible encoding and decoding schemes that allow us to operate close to channel capacity.

Index

(1) Binary Erasure Channel (BEC)

(2) Classical channel coding approach
(3) Modern channel coding
(4) Low-density Parity-Check codes

Linear block codes

- Generator matrix: $\mathbf{c}=\mathbf{b} \mathbf{G}$ where $\mathbf{b} \in\{0,1\}^{k}$.
- Parity check matrix: $\mathbf{c H}^{T}=\mathbf{0} \forall \mathbf{c} \in \mathcal{C}$.
- \mathcal{C} is the set of all codewords (codebook)
- Each row of the parity check matrix yields a linear constraint on the coded bits.
For a Hamming $(7,4)$ code
$\mathbf{G}=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}\right], \quad \mathbf{H}=\left[\begin{array}{lllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1\end{array}\right]$
Therefore...

$$
\begin{aligned}
& c_{1} \oplus c_{3} \oplus c_{5} \oplus c_{7}=0 \\
& c_{2} \oplus c_{3} \oplus c_{6} \oplus c_{7}=0 \\
& c_{4} \oplus c_{5} \oplus c_{6} \oplus c_{7}=0
\end{aligned}
$$

Transmission over BEC

- Linear block code (n, k) with matrices \mathbf{G} and \mathbf{H}.
- Codeword \mathbf{c} is sent.
- Vector \mathbf{r} is observed.

Some bits are erased, others are not:

- \mathcal{E} is the set containing the indexes of the erased bits
- \mathcal{R} is the set containing the indexes of the received bits.
- $\mathcal{E} \cup \mathcal{R}=\{1, \ldots, n\}$.

Thus, for the BEC

$$
\mathbf{r}(\mathcal{E})=?, \quad \mathbf{r}(\mathcal{R})=\mathbf{c}(\mathcal{R})
$$

Decoding over BEC: example

- Hamming $(7,4)$ code.
- $\mathbf{c}=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right]$ is sent.
- $\mathbf{r}=\left[\begin{array}{lllllll}1 & \text { ? } & 1 & 0 & \text { ? } & \text { ? } & 0\end{array}\right]$ is received.
- $\mathcal{E}=\{2,5,6\}$ and $\mathcal{R}=\{1,3,4,7\}$.

Thus, the system of equations can be simplified:
$\left.\left.\left.\begin{array}{l}c_{1} \oplus c_{3} \oplus c_{5} \oplus c_{7}=0 \\ c_{2} \oplus c_{3} \oplus c_{6} \oplus c_{7}=0 \\ c_{4} \oplus c_{5} \oplus c_{6} \oplus c_{7}=0\end{array}\right\} \rightarrow \begin{array}{l}1 \oplus 1 \oplus c_{5} \oplus 0=0 \\ \rightarrow c_{2} \oplus 1 \oplus c_{6} \oplus 0=0 \\ 0 \oplus c_{5} \oplus c_{6} \oplus 0=0\end{array}\right\} \rightarrow \begin{array}{l}c_{5}=0 \\ \rightarrow c_{2} \oplus c_{6}=1 \\ c_{5} \oplus c_{6}=0\end{array}\right\}$

By solving the system of binary equations we get a unique solution $\hat{\mathbf{c}}=[1110000]=\mathbf{c}$.

Decoding over BEC: general statement

- Linear block code (n, k) with matrices \mathbf{G} and \mathbf{H}.
- Codeword \mathbf{c} is sent.
- Vector \mathbf{r} is observed.
- $\mathbf{H}_{\mathcal{E}}$ is the submatrix of \mathbf{H} obtained by picking only those columns whose indexes are in \mathcal{E} (and, analogously, $\mathbf{H}_{\mathcal{R}}$ is...).

Optimal maximum a posteriori decoding

Find $\mathbf{c}(\mathcal{E})$ by solving the following system of equations:

$$
\mathbf{c}(\mathcal{E}) \mathbf{H}_{\mathcal{E}}^{T}=\mathbf{c}(\mathcal{R}) \mathbf{H}_{\mathcal{R}}^{T}
$$

In the former example:

$$
\left[\begin{array}{lll}
c_{2} & c_{5} & c_{6}
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]^{\top}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]
$$

System of linear equations for MAP decoding

$$
\begin{aligned}
& \mathbf{c H}^{\top} \quad=\left[\begin{array}{lllllll}
c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7}
\end{array}\right]\left[\begin{array}{c}
\mathbf{h}_{1} \\
\vdots \\
\mathbf{h}_{7}
\end{array}\right]=0 \\
& =c_{1} \mathbf{h}_{1}+c_{2} \mathbf{h}_{2}+c_{3} \mathbf{h}_{3}+c_{4} \mathbf{h}_{4}+c_{5} \mathbf{h}_{5}+c_{6} \mathbf{h}_{6}+c_{7} \mathbf{h}_{7}=0 \\
& =c_{2} \mathbf{h}_{2}+c_{5} \mathbf{h}_{5}+c_{6} \mathbf{h}_{6}+c_{1} \mathbf{h}_{1}+c_{3} \mathbf{h}_{3}+c_{4} \mathbf{h}_{4}+c_{7} \mathbf{h}_{7}=0 \\
& =\left[\begin{array}{lll}
c_{2} & c_{5} & c_{6}
\end{array}\right] \underbrace{\left[\begin{array}{l}
\mathbf{h}_{2} \\
\mathbf{h}_{5} \\
\mathbf{h}_{6}
\end{array}\right]}_{\mathbf{H}_{\mathcal{E}^{T}}}+\left[\begin{array}{llll}
c_{1} & c_{3} & c_{4} & c_{7}
\end{array}\right] \underbrace{\left[\begin{array}{l}
\mathbf{h}_{1} \\
\mathbf{h}_{3} \\
\mathbf{h}_{4} \\
\mathbf{h}_{7}
\end{array}\right]}_{\mathbf{H}_{\mathcal{R}}^{T}}=0
\end{aligned}
$$

Hence,

$$
\left[\begin{array}{lll}
c_{2} & c_{5} & c_{6}
\end{array}\right] \mathbf{H}_{\mathcal{E}}^{T}=\left[\begin{array}{llll}
c_{1} & c_{3} & c_{4} & c_{7}
\end{array}\right] \mathbf{H}_{\mathcal{R}}^{T}
$$

$\mathbf{h}_{j} \equiv j$-th row of matrix $\mathbf{H}^{\top}=j$-th column of matrix \mathbf{H}

Optimal MAP decoding (classical approach)

When solving the system of linear equations, $\mathbf{c}(\mathcal{E}) \mathbf{H}_{\mathcal{E}}^{T}=\mathbf{c}(\mathcal{R}) \mathbf{H}_{\mathcal{R}}^{T}$ for $\mathbf{c}(\mathcal{E})$, there are two possible outcomes:

- the system has multiple solutions \rightarrow all of them are equally likely, and we declare a decoding failure.
- the system has an unique solution $\rightarrow \hat{\mathbf{c}}=\mathbf{c}$, and no decoding error is possible.

Computational complexity:

- Gaussian elimination requires $O\left(n^{3}\right)$ operations
- After Gaussian elimination, backwards substitution is $O(n)$

Index

(1) Binary Erasure Channel (BEC)

(2) Classical channel coding approach

(3) Modern channel coding

4 Low-density Parity-Check codes

Suboptimal decoding over the BEC: example I

Let us consider:

- Hamming code $(7,4)$
- $\mathbf{c}=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right]$ is sent.
- $\mathbf{r}=\left[\begin{array}{lllllll}1 & \text { ? } & 1 & 0 & ? & ? & 0\end{array}\right]$ is received.

Assuming the system is already triangularized and revealing as much information as possible...

$$
\begin{gathered}
c_{5}=0 \\
c_{5}+c_{6}=0 \rightarrow c_{6}=0 \\
c_{2}+c_{6}=1 \rightarrow c_{2}=1
\end{gathered}
$$

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{2} \\
c_{6} \\
c_{5}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

(B) Decoding

Complexity is $O(n)$.

Suboptimal decoding over the BEC: example II

Another transmission:

- $(7,4)$ Hamming code
- $\mathbf{c}=\left[\begin{array}{lllllll}1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right]$ is sent.
- $\mathbf{r}=\left[\begin{array}{llllll}0 & 1 & ? & 0 & 0 & ?\end{array}\right]$ is received.

Now,

$$
\begin{aligned}
& c_{3} \oplus c_{7}=0 \\
& c_{3} \oplus c_{6} \oplus c_{7}=1 \\
& c_{6} \oplus c_{7}=0
\end{aligned}
$$

Decoding error

There are no equations with a single variable. No information can be revealed.
(if we were to use optimal decoding, c_{3} is revealed $\left(c_{3}=1\right)$ by adding the last two equations)

Classical v. modern coding theory

Classical

- Optimal decoding via ML/MAP rule with $O\left(n^{3}\right)$ operations. It restrains the coding schemes we can use in practice.
- Small size (n) because otherwise decoding complexity becomes prohibitive. We cannot operate very close to capacity at vanishing error probability.
- Examples: Linear Block codes (BCH codes, Reed Solomon Codes), Convolutional codes...

Modern

- Approximate decoding with worse performance for the sake of much less complexity ($O(n)$ operations).
- Close to capacity at vanishing error probability is achieved using very long codes! (large n)
- Examples: Turbo Codes, LDPC codes, Polar Codes.

Tanner graph

$$
\mathbf{H}=\left[\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

The constraints given by this matrix can be represented using a Tanner graph

Variable nodes

Parity check nodes

Belief propagation

Initialization: variable nodes send the channel observation to the parity check nodes they are connected to:

While there is any unsolved "?"
(1) Using the received information, each parity check node tries to solve for the variable that sent a "?" message. If possible, they send the value obtained to the variable nodes. Otherwise they send a "?" message.

- Only parity-check nodes with a single unknown can solve a variable!
(2) Variable nodes send their new value to the parity check nodes...or they resend a "?" message.

Belief propagation

First iteration

Belief propagation

Second iteration

Third iteration

Belief propagation

Some remarks:

- In general, the performance obtained with the suboptimal decoder is quite poor (lots of decoding errors).
- Given a parity check matrix \mathbf{H} of dimensions $(n-k) \times n$, the number ones per row can be as high as n.
- If a row has αn ones, then the probability that $\alpha n-1$ of the variables are correctly received and only one is unknown is

$$
\alpha n \epsilon(1-\epsilon)^{(\alpha n-1)}
$$

which tends to 0 (\Rightarrow decoding error) as $\mathrm{n} \rightarrow \infty$.

$$
(\alpha \in(0,1) \equiv \text { rate of } 1 \text { s per bit })
$$

Index

(1) Binary Erasure Channel (BEC)

(2) Classical channel coding approach

3 Modern channel coding

4 Low-density Parity-Check codes

Low-density Parity-Check codes

LDPC codes: linear block codes defined by sparse parity-check matrices.

$$
\mathbf{H}_{(\mathrm{n}-k) \times \mathrm{n}}, \quad \mathbf{c H}^{T}=\mathbf{0} \quad \forall \mathbf{c} \in \mathcal{C}
$$

LDPC $(3,6)$ with $n=20$

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
| :--- |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | |
| 3 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | |
| 4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
| 5 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | |
| 6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
| 7 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
| 8 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | |
| 9 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | |
| 10 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | |

The density of ones in the matrix \mathbf{H} is $6 / \mathrm{n}$ and the rate is $R=0.5$.

Imposing structure on H

If the number of ones per row is fixed to 6 , e.g.,
$\left[\begin{array}{llll}c_{1} & c_{2} & \cdots & c_{20}\end{array}\right]\left[\begin{array}{c}0 \\ \vdots \\ 1 \\ \vdots\end{array}\right]=0 \Rightarrow c_{5}+c_{9}+c_{10}+c_{11}+c_{16}+c_{20}=0$
then the probability that each row in \mathbf{H} yields a single unknown, e.g.,

$$
c_{5}+?+c_{10}+c_{11}+c_{16}+c_{20}=0
$$

is

$$
6 \epsilon(1-\epsilon)^{5}
$$

which does not depend on n. An equation with a single unknown can be solved immediately...and once the variable is revealed, there is a non-zero probability that a new row with a single unknown is created. This probability does not depend on n either!!

BER over BEC

Bit-error rate of the $(3,6)$ ensemble over the BEC; $n=2^{8}(\circ)$, $n=2^{9}(\square), n=2^{11}(\triangleright)$.

The threshold ε^{*} can be computed analytically. It only depends on the connectivity pattern in matrix H!.

