

Channel coding Introduction & linear codes

Manuel A. Vázquez Jose Miguel Leiva Joaquín Míguez

February 20, 2024

- Introduction
 - Channel models
 - Fundamentals
- **Encoding**
- 3 Decoding
 - Hard decoding
 - Soft decoding
 - Coding gain
- 4 Linear block codes
 - Fundamentals
 - Decoding
- Cyclic codes
 - Polynomials
 - Decoding

Introduction

•0000000000

Introduction

- Channel models
- Fundamentals
- - Hard decoding
 - Soft decoding
 - Coding gain
- - Fundamentals
 - Decoding
- Cyclic codes
 - Polynomials
 - Decoding

(Channel) Coding

Goal

Introduction

Add redundancy to the transmitted information so that it can be recovered if errors happen during transmission.

Example: repetition code

- ullet 0 ightarrow 000
- ullet 1 o 111

so that, e.g.,

$$010 \rightarrow 000111000$$

What should we decide it was transmitted if we receive

010 100 000 ?

000 (instead of 010)!

Digital communications system

Introduction

000000000

This model can be analyzed at different levels...

- Digital channel
- Gaussian channel

Introduction

Introduction

00000000000

Gaussian channel (with digital input)

Some basic concepts

Code

Mapping from a sequence of k bits, $\mathbf{b} \in \{\mathbf{b}_1, \mathbf{b}_2, \cdots\}$, onto another one of n > k bits, $\mathbf{c} \in \{\mathbf{c}_1, \mathbf{c}_2, \cdots\}$.

Probability of error for b_i

$$P_a^i = Pr\{\hat{\mathbf{b}} \neq \mathbf{b}_i | \mathbf{b} = \mathbf{b}_i\}, i = 1, \dots, 2^k$$

- Maximum probability of error: $P_e^{\max} = \max_i P_e^i$
- **Rate**: The rate of a code is the number of information bits, k, carried by a codeword of length n.

$$R = k/n$$

Codeword vs bit error probability

P_e: <u>codeword</u> error probability

$$P_e = rac{\# ext{ codewords received incorrectly}}{ ext{overall } \# ext{ codewords}} = rac{ extbf{v}}{ extbf{w}}$$

• BER (Bit Error Rate): bit error probability

$$BER = \frac{\# \text{ incorrect bits}}{\# \text{ transmitted bits}}$$

(they match if every codeword carries a single information bit)

worst-case scenario
$$\rightarrow$$
 $BER = \frac{\mathbf{v} \times \mathbf{k}}{\mathbf{w} \times \mathbf{k}} = P_e$
best-case scenario \rightarrow $BER = \frac{\mathbf{v} \times \mathbf{1}}{\mathbf{w} \times \mathbf{k}} = \frac{P_e}{\mathbf{k}}$ $\Rightarrow \frac{P_e}{\mathbf{k}} \leq BER \leq P_e$

Channel coding theorem

Theorem: Channel coding (Shannon, 1948)

If C is the capacity of a channel, then it is possible to reliably transmit with rate R < C.

Capacity

It is the maximum of the mutual information between the input and output of the channel.

Reliable transmission

There is a sequence of codes (n, k) = (n, nR) such that, when $n \to \infty$, $P_e^{\text{max}} \to 0$.

Introduction

Channel coding theorem: example

Let us consider 4 binary channels with

$$C=1-H_b(p),$$

being p the channel BER and H_b the binary entropy.

$$p = 0.15 \Rightarrow C_1 = 0.39$$
 $p = 0.13 \Rightarrow C_2 = 0.44$
 $p = 0.17 \Rightarrow C_3 = 0.34$ $p = 0.19 \Rightarrow C_4 = 0.29$

and a code with rate R = 1/3 = 0.33.

Channel coding theorem

A code with rate R=1/3 only respects the Shannon limit in the first three scenarios.

Introduction

Channel coding theorem: example

The figure shows the evolution of the codeword error probability as a function of n: it approaches 0 when R < C.

Figure: Left: logarithmic scale; right: linear scale

Definitions

Introduction

Definition: Redundancy

The number of bits, r = n - k, added by the encoder.

It allows rewriting the rate of the code as $R = \frac{k}{n} = \frac{n-r}{n} = 1 - \frac{r}{n}$

Definition: Hamming distance...

...between two binary sequences is the number of different bits.

It is a measure of how different two sequences of bits are. For instance, $d_H(1010, 1001) = 2.$

Definition: Minimum distance of a code

$$d_{min} = \min_{i \neq j} d_H(\mathbf{c_i}, \mathbf{c_j})$$

Index

Introduction

- - Channel models
 - Fundamentals
- 2 Encoding
- - Hard decoding
 - Soft decoding
 - Coding gain
- - Fundamentals
 - Decoding
- Cyclic codes
 - Polynomials
 - Decoding

In the usual model for a digital communications system,

the coding scheme is always placed before the system

and we have

$$B[0] = C[0]$$
 $B[1] = C[1]$
 \vdots
 $C[1]$

Index

- Introduction
 - Channel models
 - Fundamentals
- 2 Encoding
- 3 Decoding
 - Hard decoding
 - Soft decoding
 - Coding gain
- 4 Linear block codes
 - Fundamentals
 - Decoding
- Cyclic codes
 - Polynomials
 - Decoding

Hard decoding

Introduction

- Decoding at the bit level
- It relies on the digital channel

- The input to the decoder are bits coming from the Detector, the \hat{B} 's
- Metric is the Hamming distance.

Notation

$$\mathbf{c}_i = \left[C^i[0], C^i[1], \cdots C^i[n-1]\right] \equiv i$$
-th codeword $\mathbf{r} = \left[\hat{B}[0], \hat{B}[1], \cdots \hat{B}[n-1]\right] \equiv \text{received word}$

Introduction

Hard decoding: decision rule

• Maximum a Posteriori (MAP) rule: we decide \mathbf{c}_i if

$$p(\mathbf{c}_i|\mathbf{r}) > p(\mathbf{c}_j|\mathbf{r}) \qquad \forall j \neq i$$

 If all the codewords are equally likely, it is equivalent to Maximum Likelihood (ML),

Decoding

$$p(\mathbf{r}|\mathbf{c}_i) > p(\mathbf{r}|\mathbf{c}_i) \quad \forall j \neq i$$

• Likelihoods can be expressed in terms of d_H

$$p(\mathbf{r}|\mathbf{c}_i) = \epsilon^{d_H(\mathbf{r},\mathbf{c}_i)} (1-\epsilon)^{n-d_H(\mathbf{r},\mathbf{c}_i)}$$

 $\epsilon \equiv channel$ bit error probability

• If $\epsilon < 0.5$ ML rule is tantamount to deciding \mathbf{c}_i if

$$d_H(\mathbf{r}, \mathbf{c}_i) < d_H(\mathbf{r}, \mathbf{c}_i) \qquad \forall j \neq i.$$

Hard decoding: error detection vs. correction

Assuming errors happened during transmission, there are two possible scenarios:

- We do not detect them (we only detect errors if $\mathbf{r} \neq \mathbf{c}_i$ $i = 1, \dots, 2^k$)
- We do detect them, in which case we must make a decision:
 - We don't risk correct them and request a retransmission we **cannot** correct with confidence)
 - we try and correct them (a risk is is involved!!)

We need a *policy* for the latter scenario: in this course we **always** try and fix the errors.

Hard decoding: detection

- We detect a word error when **less than** d_{min} bit errors happen.
- Probability of an erroneous codeword going undetected (at least d_{min} bit errors)

$$P_{nd} \leq \sum_{m=d_{min}}^{n} \binom{n}{m} \epsilon^{m} (1-\epsilon)^{n-m}$$

where ϵ is the bit error probability in the system, and d_{min} is the minimum distance between codewords.

Introduction

A bound on the probability of error...

...since it might happen that d_{min} bit errors do not turn a codeword into another one \Rightarrow < rather than =

Hard decoding: correction ("always correct" policy)

Decoding

• Decoding is correct if there are less than $d_{min}/2$ erroneous bits ⇒ the code can correct **up to**

$$t = \lfloor (d_{min} - 1)/2 \rfloor$$
 errors.

Error correction probability:

$$P_{e} \leq \sum_{m=t+1}^{n} {n \choose m} \epsilon^{m} (1-\epsilon)^{n-m}$$

Introduction

A bound on the probability of error...

...since it is possible to correct more than t errors (there is no guarantee, though) $\Rightarrow \leq$ rather than =

🦪 Approximate bound

The first element in the summation is a good approximation if ϵ is small and d_{min} large.

Soft decoding

Introduction

Decoding at the element from the constellation level

Decoding

It relies on the Gaussian channel

with

$$q = A + n$$

where **n** is a Gaussian noise vector.

- The input to the decoder are the observations coming from the Demodulator, the q's.
- Metric is Euclidean distance

Notation

 $m \equiv \#$ bits carried by every **A**

$$ilde{\mathbf{c}}_i = \left[\mathbf{A}^{(i)}[0], \mathbf{A}^{(i)}[1], \cdots \mathbf{A}^{(i)}[n/m-1] \right] \equiv i$$
-th codeword

$$\tilde{\mathbf{r}} = [\mathbf{q}[0], \mathbf{q}[1], \cdots \mathbf{q}[n/m-1]] \equiv \text{received word}$$

Soft decoding: correction

• The codeword error probability can be approximated as

$$P_{\rm e} pprox \kappa {
m Q} \left(rac{d_{min}/2}{\sqrt{N_0/2}}
ight)$$
 (1)

where κ is the *kiss number*.

Definition: kiss number

It is the maximum number of codewords that are at distance d_{min} from any given.

Coding gain

Introduction

 If we set equal the BER with and without coding, the coding gain is obtained as

$$G = \frac{(E_b/N_0)_{nc}}{(E_b/N_0)_c}$$

Different for soft and hard decoding

To compute the individual E_b/N_0 's, it is often useful...

R Stirling's approximation

$$Q(x) \approx \frac{1}{2}e^{-\frac{x^2}{2}}$$

Coding gain: example

$$\xrightarrow{-\sqrt{E_s}} \qquad \xrightarrow{\sqrt{E_s}} \phi_1(t)$$

Let us consider a binary antipodal constellation 2-PAM ($\pm\sqrt{E_s}$), with the code

\mathbf{b}_i	\mathbf{c}_i
00	000
01	011
10	110
11	101

Introduction

 This code cannot correct any error since $t = |(d_{min} - 1)/2| = 0$, and the codeword error probability is

$$P_e \le \sum_{m=1}^{3} {3 \choose m} \epsilon^m (1 - \epsilon)^{n-m} \approx 3\epsilon$$

where $\epsilon = Q(\sqrt{2E_s/N_0})$.

Bit error probability

$$BER \approx \frac{2}{3}3Q \left(\sqrt{\frac{2E_s}{N_0}} \right)$$

• In order to express it in terms of E_b , we use that $2E_b = 3E_s$, and hence

$$BER \approx 2Q \left(\sqrt{\frac{4E_b}{3N_0}} \right)$$

Coding gain: example - soft decoding

• We decide **b** from the output of the Gaussian channel,

Decoding

$$\boldsymbol{q} = (\boldsymbol{q}[0], \boldsymbol{q}[1], \boldsymbol{q}[2]) = (\boldsymbol{A}[0] + \boldsymbol{n}[0], \boldsymbol{A}[1] + \boldsymbol{n}[1], \boldsymbol{A}[2] + \boldsymbol{n}[2])$$

Tantamount to the detector for the constellation

$$\begin{pmatrix} -\sqrt{E_s} \\ -\sqrt{E_s} \\ -\sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} -\sqrt{E_s} \\ \sqrt{E_s} \\ \sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} \sqrt{E_s} \\ \sqrt{E_s} \\ -\sqrt{E_s} \end{pmatrix}, \quad \begin{pmatrix} \sqrt{E_s} \\ -\sqrt{E_s} \\ \sqrt{E_s} \end{pmatrix}$$

which has minimum (Euclidean) distance $d_{min} = 2\sqrt{2E_s}$

• From (1) the codeword error probability is

$$P_e \approx 3Q \left(\sqrt{\frac{4E_s}{N_0}}\right)$$

• BER as a function of E_b : $BER \approx 2Q \left(\sqrt{\frac{8E_b}{3N_0}} \right)$

Introduction

Decoding

• Without coding, we have $E_h = E_s$, and

$$\mathrm{BER}_{nc} = \epsilon = Q(\sqrt{2E_b/N_0})$$

- Gain with hard decoding
 - We set equal BER_c and BER_{nc}
 - Approximation: $Q(\cdot)$

$$G = \frac{(E_b/N_0)_{nc}}{(E_b/N_0)_c} = 2/3 \approx -1.76 dB$$

- We are actually losing performance!! (expected, since the code is not able correct any error)
- Soft decoding

$$G = 4/3 \approx 1.25 dB$$

Now we are making good use of coding

Index

- Introduction
 - Channel models
 - Fundamentals
- 2 Encoding
- 3 Decoding
 - Hard decoding
 - Soft decoding
 - Coding gain
- 4 Linear block codes
 - Fundamentals
 - Decoding
- Cyclic codes
 - Polynomials
 - Decoding

Linear block codes

Introduction

Region Galois field modulo 2 (GF(2))

$$a+b=(a+b)_2$$
$$a\cdot b=(a\cdot b)_2$$

Definition: Linear Block Code

A linear block code is a code in which any linear combination of codewords is also a codeword.

Properties

- It is a subspace in $GF(2)^n$ with 2^k elements.
- The all-zeros word is a codeword.
- Every codeword has at least another codeword that is at d_{min} from it.
- d_{min} is the smallest weight (number of 1s) among the non-null codewords.

Linear block codes: structure

Elements in an (n, k) linear block code

- **b** is the message, $1 \times k$
- **c** is the codeword, $1 \times r$
- **r** is the received word, $1 \times n$ with

$$\mathbf{r} = \mathbf{c} + \mathbf{e}$$

- **e** is the noise $1 \times n$
- G is the generator matrix,

Encoding

The mapping $\mathbf{b} \to \mathbf{c}$ is performed through matrix multiplication i.e.,

$$c = bG$$
.

Keep in mind:

- **b** is $1 \times k$
- **G** is $k \times n$
- c is $1 \times n$

Every row of **G** is a codeword.

Parity-check matrix

Parity check matrix, **H**, is the *orthogonal complement* of **G** so that

$$\mathbf{c}\mathbf{H}^{\top} = \mathbf{0} \Leftrightarrow \mathbf{c}$$
 is a codeword

For the sake of convenience,

Definition: Syndrome

The syndrome of the received sequence \mathbf{r} is

$$\mathbf{s} = \mathbf{r} \mathbf{H}^{\top}$$
 (with dimensions $1 \times (n - k)$)

Then,

$$\mathbf{s} = \mathbf{0} \Leftrightarrow \mathbf{r}$$
 is a codeword.

$$s = rH^T = (c + e)H^T = cH^T + eH^T = eH^T$$

Hard decoding: syndrome decoding

The minimum distance rule requires computing d_H between the received word, **r**, and every codeword...but we can carry out **syndrome** decoding

Beforehand:

Fill up a table yielding the syndrome associated with every possible error.

error (e)	syndrome(s)	(If several errors yield the same syndrome,
		choose the one that is most likely, i.e., the
:	:	one with the smallest weight)

In operation: given the received word, r:

- **1** Compute the syndrome $\mathbf{s} = \mathbf{r} \mathbf{H}^T$.
- Look up the table for the error pattern, e, with that syndrome
- Undo the error

$$\hat{\mathbf{c}} = \mathbf{r} + \mathbf{e}$$

Systematic codes

Introduction

Definition: Systematic code

A code in which the message is always embedded in the encoded sequence (in the same place).

This can be easily imposed through the generator matrix,

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix}$$
 or $\mathbf{G} = \begin{bmatrix} \mathbf{P} & \mathbf{I}_k \end{bmatrix}$

- First/last k bits in c are equal to b, and the remaining n-kare redundancy.
- If $G = [I_k \ P]$ it can be shown

$$\mathbf{H} = \begin{bmatrix} \mathbf{P}^T & \mathbf{I}_{n-k} \end{bmatrix}$$

Prove it!

Systematic code example: Hamming (7, 4)

generator matrix:

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \quad \mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Parity-check matrix:

$$\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Every Hamming code:

- It's perfect
- $d_{min} = 3$

Introduction

- $k = 2^{j} i 1$ and $n = 2^{j} 1 \ \forall i \in \mathbb{N} > 2$
 - $i = 2 \to (3, 1)$
 - $i = 3 \rightarrow (7, 4)$
 - $i = 4 \rightarrow (15, 11)$

Hamming (7,4): coding gain

Hamming (7, 4): decoding

Beforehand we apply

Introduction

$$s = eH^T$$

over every **e** that entails a single error (the code can only correct 1 erroneous bit):

error	syndrome
0000000	000
1000000	101
0100000	110
0010000	111
0001000	011
0000100	100
0000010	010
0000001	001

Equivalent codes

- Computing H from G

If the code is systematic, we have an easy way of computing the parity-check matrix...

...but what if it's not? If the code is **not** systematic, one can apply operations on the generator matrix, **G**, to try and transform it into that of an *equivalent* systematic code, $\mathbf{G}' = [\mathbf{I}_k \ \mathbf{P}]$.

Allowed operations are:

On rows replace any row with a linear combination of itself and other rows or swapping rows.

On columns swapping columns.

Definition: Equivalent codes

Two codes are equivalent if they have the same codewords (after, maybe, reordering the bits).

Index

Introduction

- - Channel models
 - Fundamentals
- - Hard decoding
 - Soft decoding
 - Coding gain
- - Fundamentals
 - Decoding
- Cyclic codes
 - Polynomials
 - Decoding

Cyclic codes

Introduction

$\stackrel{\rlap{\ \leftarrow}}{\sim}$ Large values of k and n

Working with matrices is not efficient!!

Definition: Cyclic code

It is a linear block code in which any circular shift of a codeword results in another codeword.

In a cyclic code,

- If $[c_0, c_1, \dots, c_{n-1}]$ is a codeword, then so is $[c_{n-1}, c_0, c_1, \ldots, c_{n-2}]$
 - i.e., every codeword is a (circularly) shifted version of another codeword.

Polynomial representation of codewords

Codeword $[c_0, c_1, \dots, c_{n-1}]$ is represented as the polynomial

$$c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

How is

Introduction

$$[c_0, c_1, \cdots, c_{n-1}] \rightarrow [c_{n-1}, c_0, \cdots, c_{n-2}]$$

achieved mathematically? By multiplying c(x) times x modulo $(x^{n}-1)$, i.e.,

$$xc(x) = c_0x + c_1x^2 + \dots + c_{n-1}x^n = c_0x + \dots + c_{n-1}x^n + c_{n-1} - c_{n-1}$$
$$= c_{n-1}(x^n - 1) + c_{n-1} + c_0x + c_1x^2 + \dots + c_{n-2}x^{n-1}$$

Hence.

$$(xc(x))_{x^{n}-1} = \underbrace{c_{n-1} + c_{0}x + c_{1}x^{2} + \dots + c_{n-2}x^{n-1}}_{[c_{n-1},c_{0},\dots,c_{n-2}]}$$

Encoding

$$egin{array}{cccc} {f G} &
ightarrow & g(x) \ {f generator} & {f generator} \ {f matrix} & {f polynomial} \end{array}$$

Coding is carried out by multiplying, modulo $x^n - 1$, the polynomial representing \mathbf{b}_i by a **generator polynomial**, g(x),

$$c(x) = (b(x)g(x))_{x^n-1}$$

The generator polynomial, g(x),

- it is of degree r = n k,
- it must be an irreducible polynomial

Decoding

$$egin{array}{lll} \mathbf{H} &
ightarrow & h(x) \ & ext{parity-check} \ & ext{matrix} & ext{polynomial} \end{array}$$

The parity-check polynomial, h(x),

- it is of degree r' = n k 1,
- must satisfy

$$(g(x)h(x))_{x^n-1}=0.$$

Just like in regular linear block codes, we can perform **syndrome decoding**,

$$s(x) = (r(x)h(x))_{x^n-1}$$