

# Channel coding 

Introduction \& linear codes

Manuel A. Vázquez<br>Jose Miguel Leiva Joaquín Míguez

February 20, 2024

## Index

(1) Introduction

- Channel models
- Fundamentals
(2) Encoding
(3) Decoding
- Hard decoding
- Soft decoding
- Coding gain

4 Linear block codes

- Fundamentals
- Decoding
(5) Cyclic codes
- Polynomials
- Decoding


## Index

(1) Introduction

- Channel models
- Fundamentals
(2) Encoding
(3) Decoding
- Hard decoding
- Soft decoding
- Coding gain
(4) Linear block codes
- Fundamentals
- Decoding
(5) Cyclic codes
- Polynomials
- Decoding


## (Channel) Coding

## Goal

Add redundancy to the transmitted information so that it can be recovered if errors happen during transmission.

## Example: repetition code

- $0 \rightarrow 000$
- $1 \rightarrow 111$
so that, e.g.,

$$
010 \rightarrow 000111000
$$

What should we decide it was transmitted if we receive

## 010100000 ?

000 (instead of 010)!

## Digital communications system

transmitter


This model can be analyzed at different levels...

- Digital channel
- Gaussian channel


## Digital channel



## Gaussian channel (with digital input)



## Some basic concepts

- Code

Mapping from a sequence of $k$ bits, $\mathbf{b} \in\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots\right\}$, onto another one of $n>k$ bits, $\mathbf{c} \in\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \cdots\right\}$.

$i=1, \cdots, 2^{k} \quad i=1, \cdots, 2^{k}$

- Probability of error for $\mathbf{b}_{i}$

$$
P_{e}^{i}=\operatorname{Pr}\left\{\hat{\mathbf{b}} \neq \mathbf{b}_{i} \mid \mathbf{b}=\mathbf{b}_{i}\right\}, i=1, \ldots, 2^{k}
$$

- Maximum probability of error: $P_{e}^{\max }=\max _{i} P_{e}^{i}$
- Rate: The rate of a code is the number of information bits, $k$, carried by a codeword of length $n$.

$$
R=k / n
$$

## Codeword vs bit error probability

- $P_{e}$ : codeword error probability

$$
P_{e}=\frac{\# \text { codewords received incorrectly }}{\text { overall \# codewords }}=\frac{v}{w}
$$

- BER (Bit Error Rate): bit error probability

$$
B E R=\frac{\# \text { incorrect bits }}{\# \text { transmitted bits }}
$$

(they match if every codeword carries a single information bit) $\left.\begin{array}{l}\text { worst-case scenario } \rightarrow B E R=\frac{v \times k}{w \times k}=P_{e} \\ \text { best-case scenario } \rightarrow B E R=\frac{v \times 1}{w \times k}=\frac{P_{e}}{k}\end{array}\right\} \Rightarrow \frac{P_{e}}{k} \leq B E R \leq P_{e}$

## Channel coding theorem

## Theorem: Channel coding (Shannon, 1948)

If $C$ is the capacity of a channel, then it is possible to reliably transmit with rate $R<C$.

## Capacity

It is the maximum of the mutual information between the input and output of the channel.

Reliable transmission
There is a sequence of codes $(n, k)=(n, n R)$ such that, when $n \rightarrow \infty, P_{e}^{\max } \rightarrow 0$.

## Channel coding theorem: example



$$
C=1-H_{b}(p),
$$

being $p$ the channel BER and $H_{b}$ the binary entropy.
Let us consider 4 binary channels with

$$
\begin{array}{ll}
p=0.15 \Rightarrow C_{1}=0.39 & p=0.13 \Rightarrow C_{2}=0.44 \\
p=0.17 \Rightarrow C_{3}=0.34 & p=0.19 \Rightarrow C_{4}=0.29
\end{array}
$$

and a code with rate $R=1 / 3=0.33$.
2 Channel coding theorem
A code with rate $R=1 / 3$ only respects the Shannon limit in the first three scenarios.

## Channel coding theorem: example

The figure shows the evolution of the codeword error probability as a function of $n$ : it approaches 0 when $R<C$.



Figure: Left: logarithmic scale; right: linear scale

## Definitions

## Definition: Redundancy

The number of bits, $r=n-k$, added by the encoder.

It allows rewriting the rate of the code as $R=\frac{k}{n}=\frac{n-r}{n}=1-\frac{r}{n}$

## Definition: Hamming distance...

...between two binary sequences is the number of different bits.

It is a measure of how different two sequences of bits are. For instance, $d_{H}(1010,1001)=2$.

Definition: Minimum distance of a code

$$
d_{\min }=\min _{i \neq j} d_{H}\left(\mathbf{c}_{\mathbf{i}}, \mathbf{c}_{\mathbf{j}}\right)
$$

## Index

(1) Introduction

- Channel models
- Fundamentals


## (2) Encoding

(3) Decoding

- Hard decoding
- Soft decoding
- Coding gain

4 Linear block codes

- Fundamentals
- Decoding
(5) Cyclic codes
- Polynomials
- Decoding


## Coding

In the usual model for a digital communications system,

the coding scheme is always placed before the system

and we have

$$
\left.\begin{array}{cc}
B[0]= & C[0] \\
B[1]= & C[1] \\
\vdots & \vdots
\end{array}\right\} \text { codeword }
$$

## Index

(1) Introduction

- Channel models
- Fundamentals

(3) Decoding
- Hard decoding
- Soft decoding
- Coding gain
(4) Linear block codes
- Fundamentals
- Decoding
(5) Cyclic codes
- Polynomials
- Decoding


## Hard decoding

- Decoding at the bit level
- It relies on the digital channel

- The input to the decoder are bits coming from the Detector, the $\hat{B}$ 's.
- Metric is the Hamming distance.


## Notation

$$
\begin{aligned}
\mathbf{c}_{i} & =\left[C^{i}[0], C^{i}[1], \cdots C^{i}[n-1]\right] \equiv i \text {-th codeword } \\
\mathbf{r} & =[\hat{B}[0], \hat{B}[1], \cdots \hat{B}[n-1]] \equiv \text { received word }
\end{aligned}
$$

## Hard decoding: decision rule

- Maximum a Posteriori (MAP) rule: we decide $\mathbf{c}_{i}$ if

$$
p\left(\mathbf{c}_{i} \mid \mathbf{r}\right)>p\left(\mathbf{c}_{j} \mid \mathbf{r}\right) \quad \forall j \neq i
$$

- If all the codewords are equally likely, it is equivalent to Maximum Likelihood (ML),

$$
p\left(\mathbf{r} \mid \mathbf{c}_{i}\right)>p\left(\mathbf{r} \mid \mathbf{c}_{j}\right) \quad \forall j \neq i
$$

- Likelihoods can be expressed in terms of $d_{H}$

$$
p\left(\mathbf{r} \mid \mathbf{c}_{i}\right)=\epsilon^{d_{H}\left(\mathbf{r}, \mathbf{c}_{i}\right)}(1-\epsilon)^{n-d_{H}\left(\mathbf{r}, \mathbf{c}_{i}\right)}
$$

$\epsilon \equiv$ channel bit error probability

- If $\epsilon<0.5 \mathrm{ML}$ rule is tantamount to deciding $\mathbf{c}_{\boldsymbol{i}}$ if

$$
d_{H}\left(\mathbf{r}, \mathbf{c}_{i}\right)<d_{H}\left(\mathbf{r}, \mathbf{c}_{j}\right) \quad \forall j \neq i
$$

## Hard decoding: error detection vs. correction

Assuming errors happened during transmission, there are two possible scenarios:

- We do not detect them (we only detect errors if $\mathbf{r} \neq \mathbf{c}_{i} \quad i=1, \ldots, 2^{k}$ )
- We do detect them, in which case we must make a decision:
- We don't risk correct them and request a retransmission (we cannot correct with confidence)
- we try and correct them
(a risk is is involved!!)
We need a policy for the latter scenario: in this course we always try and fix the errors.


## Hard decoding: detection

- We detect a word error when less than $d_{\min }$ bit errors happen.
- Probability of an erroneous codeword going undetected (at least $d_{\text {min }}$ bit errors)

$$
P_{n d} \leq \sum_{m=d_{\min }}^{n}\binom{n}{m} \epsilon^{m}(1-\epsilon)^{n-m}
$$

where $\epsilon$ is the bit error probability in the system, and $d_{\text {min }}$ is the minimum distance between codewords.

## A A bound on the probability of error...

...since it might happen that $d_{\text {min }}$ bit errors do not turn a codeword into another one $\Rightarrow \leq$ rather than $=$

## Hard decoding: correction ("always correct" policy)

- Decoding is correct if there are less than $d_{\text {min }} / 2$ erroneous bits $\Rightarrow$ the code can correct up to

$$
t=\left\lfloor\left(d_{\text {min }}-1\right) / 2\right\rfloor \text { errors. }
$$

- Error correction probability:

$$
P_{e} \leq \sum_{m=t+1}^{n}\binom{n}{m} \epsilon^{m}(1-\epsilon)^{n-m}
$$

A. A bound on the probability of error...
...since it is possible to correct more than $t$ errors (there is no guarantee, though) $\Rightarrow \leq$ rather than $=$

## Approximate bound

The first element in the summation is a good approximation if $\epsilon$ is small and $d_{\text {min }}$ large.

## Soft decoding

- Decoding at the element from the constellation level
- It relies on the Gaussian channel
$\mathbf{A}$ Gaussian channel $\mathbf{q}$
with

$$
\mathbf{q}=\mathbf{A}+\mathbf{n}
$$

where $\mathbf{n}$ is a Gaussian noise vector.

- The input to the decoder are the observations coming from the Demodulator, the q's.
- Metric is Euclidean distance


## Notation

$m \equiv \#$ bits carried by every $\mathbf{A}$
$\tilde{\mathbf{c}}_{i}=\left[\mathbf{A}^{(i)}[0], \mathbf{A}^{(i)}[1], \cdots \mathbf{A}^{(i)}[n / m-1]\right] \equiv i$-th codeword
$\tilde{\mathbf{r}}=[\mathbf{q}[0], \mathbf{q}[1], \cdots \mathbf{q}[n / m-1]] \equiv$ received word

## Soft decoding: correction

- The codeword error probability can be approximated as

$$
\begin{equation*}
P_{e} \approx \kappa \mathrm{Q}\left(\frac{d_{\min } / 2}{\sqrt{N_{0} / 2}}\right) \tag{1}
\end{equation*}
$$

where $\kappa$ is the kiss number.

## Definition: kiss number

It is the maximum number of codewords that are at distance $d_{\text {min }}$ from any given.

## Coding gain

- If we set equal the $B E R$ with and without coding, the coding gain is obtained as

$$
G=\frac{\left(E_{b} / N_{0}\right)_{n c}}{\left(E_{b} / N_{0}\right)_{c}}
$$

- Different for soft and hard decoding

To compute the individual $E_{b} / N_{0}$ 's, it is often useful...
(D) Stirling's approximation

$$
Q(x) \approx \frac{1}{2} e^{-\frac{x^{2}}{2}}
$$

## Coding gain: example

$$
\xrightarrow{-\sqrt{E_{s}}}, \quad \xrightarrow{\sqrt{E_{s}}} \phi_{1}(t)
$$

Let us consider a binary antipodal constellation 2-PAM $\left( \pm \sqrt{E_{s}}\right)$, with the code

| $\mathbf{b}_{i}$ | $\mathbf{c}_{i}$ |
| :--- | :--- |
| 00 | 000 |
| 01 | 011 |
| 10 | 110 |
| 11 | 101 |

## Coding gain: example - hard decoding

- This code cannot correct any error since $t=\left\lfloor\left(d_{\text {min }}-1\right) / 2\right\rfloor=0$, and the codeword error probability is

$$
P_{e} \leq \sum_{m=1}^{3}\binom{3}{m} \epsilon^{m}(1-\epsilon)^{n-m} \approx 3 \epsilon
$$

where $\epsilon=Q\left(\sqrt{2 E_{s} / N_{0}}\right)$.

- Bit error probability

$$
B E R \approx \frac{2}{3} 3 Q\left(\sqrt{\frac{2 E_{s}}{N_{0}}}\right)
$$

- In order to express it in terms of $E_{b}$, we use that $2 E_{b}=3 E_{s}$, and hence

$$
B E R \approx 2 Q\left(\sqrt{\frac{4 E_{b}}{3 N_{0}}}\right)
$$

## Coding gain: example - soft decoding

- We decide $\mathbf{b}$ from the output of the Gaussian channel,

$$
\mathbf{q}=(\mathbf{q}[0], \mathbf{q}[1], \mathbf{q}[2])=(\mathbf{A}[0]+\mathbf{n}[0], \mathbf{A}[1]+\mathbf{n}[1], \mathbf{A}[2]+\mathbf{n}[2])
$$

- Tantamount to the detector for the constellation

$$
\left(\begin{array}{l}
-\sqrt{E_{s}} \\
-\sqrt{E_{s}} \\
-\sqrt{E_{s}}
\end{array}\right), \quad\left(\begin{array}{c}
-\sqrt{E_{s}} \\
\sqrt{E_{s}} \\
\sqrt{E_{s}}
\end{array}\right), \quad\left(\begin{array}{c}
\sqrt{E_{s}} \\
\sqrt{E_{s}} \\
-\sqrt{E_{s}}
\end{array}\right), \quad\left(\begin{array}{c}
\sqrt{E_{s}} \\
-\sqrt{E_{s}} \\
\sqrt{E_{s}}
\end{array}\right)
$$

which has minimum (Euclidean) distance $d_{\text {min }}=2 \sqrt{2 E_{s}}$

- From (1) the codeword error probability is

$$
P_{e} \approx 3 Q\left(\sqrt{\frac{4 E_{s}}{N_{0}}}\right)
$$

- BER as a function of $E_{b}$ :

$$
\begin{aligned}
& f E_{b}: \\
& B E R \approx 2 Q\left(\sqrt{\frac{8 E_{b}}{3 N_{0}}}\right)
\end{aligned}
$$

## Coding gain: example - hard vs soft decoding

- Without coding, we have $E_{b}=E_{s}$, and

$$
\mathrm{BER}_{n c}=\epsilon=Q\left(\sqrt{2 E_{b} / N_{0}}\right)
$$

- Gain with hard decoding
- We set equal $B E R_{c}$ and $B E R_{n c}$
- Approximation: $Q(\cdot)$

$$
G=\frac{\left(E_{b} / N_{0}\right)_{n c}}{\left(E_{b} / N_{0}\right)_{c}}=2 / 3 \approx-1.76 d B
$$

- We are actually losing performance!! (expected, since the code is not able correct any error)
- Soft decoding

$$
G=4 / 3 \approx 1.25 d B
$$

- Now we are making good use of coding


## Index

(1) Introduction

- Channel models
- Fundamentals
(2) Encoding
(3) Decoding
- Hard decoding
- Soft decoding
- Coding gain

4 Linear block codes

- Fundamentals
- Decoding
(5) Cyclic codes
- Polynomials
- Decoding


## Linear block codes

(0) Galois field modulo $2(G F(2)$ )

$$
\begin{aligned}
a+b & =(a+b)_{2} \\
a \cdot b & =(a \cdot b)_{2}
\end{aligned}
$$

## Definition: Linear Block Code

A linear block code is a code in which any linear combination of codewords is also a codeword.

## Properties

- It is a subspace in $G F(2)^{n}$ with $2^{k}$ elements.
- The all-zeros word is a codeword.
- Every codeword has at least another codeword that is at $d_{\text {min }}$ from it.
- $d_{\text {min }}$ is the smallest weight (number of 1 s ) among the non-null codewords.


## Linear block codes: structure

Elements in an ( $n, k$ ) linear block code

- $\mathbf{b}$ is the message, $\square 1 \times k$
- $\mathbf{c}$ is the codeword, $\quad \int_{1 \times n}$
- $\mathbf{r}$ is the received word, $[\quad]_{1 \times n}$ with

$$
\mathbf{r}=\mathbf{c}+\mathbf{e}
$$

- $\mathbf{e}$ is the noise $\square 1 \times n$
- G is the generator matrix,


## (for encoding)



- $\mathbf{H}$ is the parity-check matrix,



## Encoding

The mapping $\mathbf{b} \rightarrow \mathbf{c}$ is performed through matrix multiplication i.e.,

$$
\mathbf{c}=\mathbf{b G} .
$$

Keep in mind:

- $\mathbf{b}$ is $1 \times k$
- $\mathbf{G}$ is $k \times n$
- $\mathbf{c}$ is $1 \times n$


## Parity-check matrix

Parity check matrix, $\mathbf{H}$, is the orthogonal complement of $\mathbf{G}$ so that

$$
\mathbf{c H}^{\top}=\mathbf{0} \Leftrightarrow \mathbf{c} \text { is a codeword }
$$

For the sake of convenience,

## Definition: Syndrome

The syndrome of the received sequence $\mathbf{r}$ is

$$
\mathbf{s}=\mathbf{r} \mathbf{H}^{\top} \quad(\text { with dimensions } 1 \times(n-k))
$$

Then,

$$
\mathbf{s}=\mathbf{0} \Leftrightarrow \mathbf{r} \text { is a codeword. }
$$

## Syndrome-error connection

## Hard decoding: syndrome decoding

The minimum distance rule requires computing $d_{H}$ between the received word, $\mathbf{r}$, and every codeword...but we can carry out syndrome decoding

## Beforehand:

Fill up a table yielding the syndrome associated with every possible error,

| error (e) | syndrome(s) |
| :---: | :---: |
| $\vdots$ | $\vdots$ | (If several errors yield the same syndrome, choose the one that is most likely, i.e., the one with the smallest weight)

In operation: given the received word, $\mathbf{r}$ :
(1) Compute the syndrome $\mathbf{s}=\mathbf{r} \mathbf{H}^{T}$.
(2) Look up the table for the error pattern, $\mathbf{e}$, with that syndrome
(3) Undo the error

$$
\hat{\mathbf{c}}=\mathbf{r}+\mathbf{e}
$$

## Systematic codes

## Definition: Systematic code

A code in which the message is always embedded in the encoded sequence (in the same place).

This can be easily imposed through the generator matrix,

$$
\mathbf{G}=\left[\begin{array}{ll}
\mathbf{I}_{k} & \mathbf{P}
\end{array}\right] \text { or } \mathbf{G}=\left[\begin{array}{ll}
\mathbf{P} & \mathbf{I}_{k}
\end{array}\right]
$$

- First/last $k$ bits in $\mathbf{c}$ are equal to $\mathbf{b}$, and the remaining $n-k$ are redundancy.
- If $\mathbf{G}=\left[\begin{array}{ll}\mathbf{I}_{k} & \mathbf{P}\end{array}\right]$ it can be shown

$$
\mathbf{H}=\left[\begin{array}{ll}
\mathbf{P}^{T} & \mathbf{I}_{n-k}
\end{array}\right]
$$

## Exercise

Prove it!

## Systematic code example: Hamming $(7,4)$

## generator matrix:

$$
\mathbf{G}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{array}\right] \mathbf{H}=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Every Hamming code:

- It's perfect
- $d_{\text {min }}=3$
- $k=2^{j}-j-1$ and $n=2^{j}-1 \forall j \in \mathbb{N} \geq 2$
- $j=2 \rightarrow(3,1)$
- $j=3 \rightarrow(7,4)$
- $j=4 \rightarrow(15,11)$


## Hamming $(7,4)$ : coding gain



## Hamming (7, 4): decoding

Beforehand we apply

$$
\mathbf{s}=\mathbf{e H}^{T}
$$

over every $\mathbf{e}$ that entails a single error (the code can only correct 1 erroneous bit):

| error | syndrome |
| :---: | :---: |
| 0000000 | 000 |
| 1000000 | 101 |
| 0100000 | 110 |
| 0010000 | 111 |
| 0001000 | 011 |
| 0000100 | 100 |
| 0000010 | 010 |
| 0000001 | 001 |

Example: $\mathbf{r}=$ [1100101]

$$
\mathbf{s}=\boldsymbol{H}^{\top}=[1100101]\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=[110]
$$

and hence $\mathbf{e}=[0100000]$ so that

$$
\hat{\mathbf{c}}=\mathbf{r}+\mathbf{e}=\mathbf{r}=[1000101] .
$$

## Equivalent codes

## Computing H from G

If the code is systematic, we have an easy way of computing the parity-check matrix...
...but what if it's not? If the code is not systematic, one can apply operations on the generator matrix, $\mathbf{G}$, to try and transform it into that of an equivalent systematic code, $\mathbf{G}^{\prime}=\left[\begin{array}{ll}\mathbf{I}_{k} & \mathbf{P}\end{array}\right]$. Allowed operations are:

On rows replace any row with a linear combination of itself and other rows or swapping rows.
On columns swapping columns.

## Definition: Equivalent codes

Two codes are equivalent if they have the same codewords (after, maybe, reordering the bits).

## Index

(1) Introduction

- Channel models
- Fundamentals
(2) Encoding
(3) Decoding
- Hard decoding
- Soft decoding
- Coding gain
(4) Linear block codes
- Fundamentals
- Decoding
(5) Cyclic codes
- Polynomials
- Decoding


## Cyclic codes

Large values of $k$ and $n$
Working with matrices is not efficient!!

## Definition: Cyclic code

It is a linear block code in which any circular shift of a codeword results in another codeword.

In a cyclic code,

- If $\left[c_{0}, c_{1}, \ldots, c_{n-1}\right]$ is a codeword, then so is
$\left[c_{n-1}, c_{0}, c_{1}, \ldots, c_{n-2}\right.$ ]
- i.e., every codeword is a (circularly) shifted version of another codeword.


## Polynomial representation of codewords

Codeword $\left[c_{0}, c_{1}, \cdots, c_{n-1}\right.$ ] is represented as the polynomial

$$
c(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n-1} x^{n-1}
$$

How is

$$
\left[c_{0}, c_{1}, \cdots, c_{n-1}\right] \rightarrow\left[c_{n-1}, c_{0}, \cdots, c_{n-2}\right]
$$

achieved mathematically? By multiplying $c(x)$ times $x$ modulo $\left(x^{n}-1\right)$, i.e.,

$$
\begin{aligned}
x c(x) & =c_{0} x+c_{1} x^{2}+\cdots+c_{n-1} x^{n}=c_{0} x+\cdots+c_{n-1} x^{n}+c_{n-1}-c_{n-1} \\
& =c_{n-1}\left(x^{n}-1\right)+c_{n-1}+c_{0} x+c_{1} x^{2}+\cdots+c_{n-2} x^{n-1}
\end{aligned}
$$

Hence,

$$
(x c(x))_{x^{n}-1}=\underbrace{c_{n-1}+c_{0} x+c_{1} x^{2}+\cdots+c_{n-2} x^{n-1}}_{\left[c_{n-1}, c_{0}, \cdots, c_{n-2}\right]}
$$

## Encoding

> G
> generator matrix

Coding is carried out by multiplying, modulo $x^{n}-1$, the polynomial representing $\mathbf{b}_{i}$ by a generator polynomial, $g(x)$,

$$
c(x)=(b(x) g(x))_{x^{n}-1}
$$

The generator polynomial, $g(x)$,

- it is of degree $r=n-k$,
- it must be an irreducible polynomial


## Decoding



The parity-check polynomial, $h(x)$,

- it is of degree $r^{\prime}=n-k-1$,
- must satisfy

$$
(g(x) h(x))_{x^{n}-1}=0
$$

Just like in regular linear block codes, we can perform syndrome decoding,

$$
s(x)=(r(x) h(x))_{x^{n}-1}
$$

