Channel coding

Convolutional codes

Manuel A. Vázquez
Jose Miguel Leiva Joaquín Míguez

March 4, 2024

Index

(1) Codes with memory
(2) Encoding
(3) Decoding
(4) Turbo codes

Index
(1) Codes with memory
(2) Encoding
(3) Decoding

4 Turbo codes

Linear block codes v. convolutional codes

A few (related) differences...
Convolutional codes

- System has memory
- Sequence-to-sequence mapping
- Encoding is blockwise
- System has no memory
- Message-to-codeword mapping

In both schemes, every operation (e.g., convolution) is in $G F(2)$.

Specification

Codes are often specified through a block diagram that illustrates how the input is transformed into the output, e.g.

- $B^{(j)}[/]$ is the l-th bit of the j-th input
- $C^{(j)}[/]$ is the l-th bit of the j-th output
- D is a delay element

The system has memory

The output bits depend on previous (and current) inputs: this is a state machine

Specification: equations

- Connection between the inputs and the outputs

$$
\begin{array}{lc}
C^{(0)}[I]=B^{(0)}[I]+B^{(0)}[I-1]+B^{(1)}[I-1] \\
C^{(1)}[I] & =B^{(0)}[I-1]+B^{(1)}[I] \\
C^{(2)}[I] & =B^{(0)}[I-1]+B^{(1)}[I]
\end{array}
$$

- we express this relations in the D domain...

Convolution

...but, where is the convolution in a convolutional code?
(0) Convolution of discrete-time signals

$$
x[n] * h[n]=h[n] * x[n]=\sum_{k=-\infty}^{\infty} h[k] x[n-k]
$$

and assuming the impulse response, $h[k]$, is non-zero between time instants, e.g., 0 and 1

$$
=h[0] x[n]+h[1] \times[n-1]
$$

For the first output, e.g., we have

$$
C^{(0)}[I]=\underbrace{B^{(0)}[I]+B^{(0)}[I-1]}_{B^{(0)}[I] *\left[\begin{array}{ll}
1 & 1
\end{array}\right]}+\underbrace{B^{(1)}[I-1]}_{B^{(1)}[I] *\left[\begin{array}{ll}
0 & 1
\end{array}\right]}
$$

Every output is a sum of convolutions!!

D transform

Definition: The D transform...

...of a binary sequence $B^{(i)}[/]$ is

$$
\begin{aligned}
B^{(i)}(D) & =\sum_{u} B^{(i)}[u] \cdot D^{u} \\
& =\cdots B^{(i)}[-1] \cdot D^{-1}+B^{(i)}[0]+B^{(i)}[1] \cdot D^{1}+\cdots
\end{aligned}
$$

...and we write $B^{(i)}[/] \stackrel{D}{\longleftrightarrow} B^{(i)}(D)$
with the property

$$
B^{(i)}[I-d] \leftrightarrow B^{(i)}(D) \cdot D^{d}
$$

so that, e.g.,
$B^{(i)}[I]+B^{(i)}[I-1]+B^{(i)}[I-2]+B^{(i)}[I-3] \stackrel{D}{\longleftrightarrow} B^{(i)}(D)\left(1+D+D^{2}+D^{3}\right)$.

Generator matrix

- In polynomial form

$$
\begin{aligned}
& C^{(0)}(D)=(1+D) B^{(0)}(D)+D B^{(1)}(D) \\
& C^{(1)}(D)=D B^{(0)}(D)+B^{(1)}(D) \\
& C^{(2)}(D)=D B^{(0)}(D)+B^{(1)}(D)
\end{aligned}
$$

- Using matrices: $\mathbf{C}(D)=\mathbf{B}(D) \mathbf{G}(D)$, with

$$
\begin{aligned}
& \mathbf{C}(D)=\left[\begin{array}{lll}
C^{(0)}(D) & C^{(1)}(D) & C^{(2)}(D)
\end{array}\right] \quad \mathbf{B}(D)=\left[\begin{array}{ll}
B^{(0)}(D) & B^{(1)}(D)
\end{array}\right] \\
& \mathbf{G}(D)=\left[\begin{array}{ccc}
1+D & D & D \\
D & 1 & 1
\end{array}\right]_{k \times n} \quad \begin{array}{l}
\mathbf{G} \equiv \text { generator matrix } \\
g_{i j} \equiv \text { contribution of the } i \text {-th input } \\
\text { to the j-th output }
\end{array}
\end{aligned}
$$

Definitions

Definition: Overall memory...

...of the code, M_{t}, is the numer of delay units in the coding scheme.

$$
M_{t}=\sum_{i=0}^{k-1} M^{(i)}
$$

with

$$
M^{(i)}=\max _{j} \operatorname{degree}\left(g_{i j}(D)\right) \equiv \text { memory } i \text {-th input }
$$

Definition: Constraint length

...of the code, K, is the maximum length of the impulse response,

$$
K=1+\max _{i, j} \text { degree }\left(g_{i j}(D)\right)
$$

A convolutional code can also be systematic (same definition).

The encoder as a finite-state machine

- The state of the encoder is given by the bits stored (yielded as output) in the delay elements, here

$$
\Psi \equiv\left(B^{(0)}[I-1], B^{(0)}[I-2], B^{(0)}[I-3]\right)
$$

- In general there are $2^{M_{t}}$ possible states (bits from delay elements across all the inputs are stacked together). A possible mapping here:

$$
\begin{array}{llll}
\Psi_{0} \rightarrow(0,0,0) & \Psi_{1} \rightarrow(1,0,0) & \Psi_{2} \rightarrow(0,1,0) & \Psi_{3} \rightarrow(1,1,0) \\
\Psi_{4} \rightarrow(0,0,1) & \Psi_{5} \rightarrow(1,0,1) & \Psi_{6} \rightarrow(0,1,1) & \Psi_{7} \rightarrow(1,1,1)
\end{array}
$$

State transition I

Let us take a look at the evolution of the state of the system for a simple example...

1	-2	-1	0	+1		
$B^{(1)}[I]$	0	0	1	1		
$B^{(2)}[I]$	0	0	0	1		
	previous bits				\quad	bits to be encoded
:---:						

State transition II

\(\left.\left.$$
\begin{array}{cccl}B^{(1)}[0] & \mathrm{D} & \begin{array}{l}\text { Initial state: } \\
B^{(2)}[0]\end{array} & \mathrm{D}=[0,0,0,0,]\end{array}
$$\right] \begin{array}{l}\Psi=[0,0,0,0,]

B^{(1)}[0]=1

B^{(2)}[0]=0\end{array}\right]\)\begin{tabular}{l}

$\Psi=[1,0,0,0]$,
$B^{(1)}[1]=1$

1
\end{tabular}

State diagram

Every arrow is labeled with

- the input bits triggering that transition, and
- the output bits originating from that state given the corresponding input bits.

Index

(1) Codes with memory
(2) Encoding

4 Turbo codes

Encoding

Straightforward once we know

- the initial state
- the state diagram

Example

Let us assume we start from state Ψ_{0} and we want to encode the sequence [001]. The result is

$$
\left[\begin{array}{lll}
00 & 0 & 11
\end{array}\right]
$$

$\overbrace{3}$ Header
After the information sequence, a header is transmitted to force the encoder to go back to its initial state.

information	header

Index

(1) Codes with memory

(2) Encoding

4 Turbo codes

Decoding

In both cases:

- the goal is to find the full sequence most likely transmitted
- the solution is given by the Viterbi algorithm

Viterbi algorithm

Some keys

- We need to assess all the trajectories starting a the initial state (usually Ψ_{0}).
- For every possible transition, we compare its corresponding output with the observed one.
- At every time instant, for every possible state, we need to find the path reaching it with the smallest accumulated cost.
- Whenever two paths reach the same state, we keep the one with the smallest accumulated cost.
- Decoding must end up in the initial state since a header is appended to every transmitted sequence in order to enforce this.

Error-free example

- Input sequence: 11010100
- Received sequence: 1110100001000111

(Trellis representation)

Error-free example

- Two first iterations

Error-free example

- Third iteration

00

Error-free example

- Final result

Example with errors

- Received sequence: 1010100101010111
- Final result

- The states sequence $\Psi_{0} \Psi_{1} \Psi_{3} \Psi_{2} \Psi_{1} \Psi_{2} \Psi_{1} \Psi_{2} \Psi_{0}$ is associated with the input sequence 11010100

Performance

- Soft decoding

$$
P_{e} \approx \kappa_{2} \mathrm{Q}\left(\sqrt{\frac{2 D_{\min } E_{s}}{N_{0}}}\right)
$$

where κ_{2} is the number of bit errors (in the decoded sequence) caused by the sequence associated with $D_{\text {min }}$.

- Hard decoding

$$
P_{e} \approx \kappa_{2} \sum_{i=\left\lfloor\left(D_{\min }-1\right) / 2\right\rfloor+1}^{n z}\binom{n z}{i} \epsilon^{i}(1-\epsilon)^{n z-i}
$$

where z is the length of the trajectory associated with $D_{\text {min }}$ and ϵ is the bit error probability.

000000000000

Finding the minimum distance $D_{\text {min }}$

A convolutional code is linear, and hence the encoded sequence that is closest to the all-zeros sequence determines $D_{\text {min }}$.

Goal

We seek the sequence of states (path) that starts at the all-zeros sequence and goes back to it with the smallest accumulated cost.

$D_{\text {min }}$ allows computing the remaining parameters that have an impact on the performance

$$
D_{\min }=5 \Rightarrow\left\{\begin{array}{l}
\kappa_{2}=1 \\
z=3
\end{array}\right.
$$

Soft decoding

For the sake of simplicity, let us assume antipodal modulation i.e., $A[/]= \pm A$.

Notation

$$
\begin{aligned}
B_{0,:} & =\{B[0], B[1], B[2], \cdots\} \equiv \text { input bits } \\
q_{0,:} & =\{q[0], q[1], q[2], \cdots\} \equiv \text { soft estimates }
\end{aligned}
$$

2 possibilities

- Sequence soft decoding: it minimizes the sequence error probability

$$
\hat{B}_{0,:}=\arg \max _{B_{0,:}} p\left(q_{0,:} \mid B_{0,:}\right)
$$

- Bitwise soft decoding: it minimizes the bit error probability

$$
\hat{B}[i]=\arg \max _{B[i]} p\left(B[i] \mid q_{0,:}\right), i=0,1, \cdots
$$

Sequence soft decoding

ML rule \equiv MAP rule

$$
\begin{aligned}
\hat{B}_{0,:} & =\arg \max _{B_{0,:}} p\left(q_{0,:} \mid B_{0,:}\right)=\arg \max _{B_{0,:}} \prod_{l} p(q[/] \mid B[/]) \\
& =\arg \min _{B_{0,:}} \sum_{l}-\log p(q[/] \mid B[/])
\end{aligned}
$$

where

$$
p(q[/] \mid B[/])=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(q[/]-A[/])^{2}}{2 \sigma^{2}}\right) .
$$

Implemented by means of the Viterbi algorithm

Bitwise soft decoding

MAP rule

We apply the maximum a posteriori (MAP) rule at the bit level to compute

$$
P\left(B[/]=1 \mid q_{0,:}\right)
$$

and we decide

$$
\hat{B}[/]= \begin{cases}1 & \text { if } p\left(B[/]=1 \mid q_{0,:}\right)>P\left(B[/]=0 \mid q_{0,:}\right) \\ 0 & \text { otherwise }\end{cases}
$$

Implemented by means of BCJR (Bahl, Cocke, Jelinek and Raviv) algorithm

Index

(1) Codes with memory

(2) Encoding
(3) Decoding

4 Turbo codes

Turbo codes

- They are built by composing two convolutional codes that operate over bits ordered differently.
- Main elements:
- 2 convolutional codes
- bit interleaver

Remarks

- The interleaver is used to increase the memory of the system without increasing the decoding complexity.
- Good performance in the low-SNR region (at about 0.7 dBs from Shannon limit).
- Regarding decoding...
- It is iterative since the decoding of the original sequence and the shuffled one must agree.
- Relies on BCJR algorithm.

