
Codes with memory Encoding Decoding Turbo codes

Channel coding
Convolutional codes

Manuel A. Vázquez
Jose Miguel Leiva
Joaqúın Mı́guez

March 4, 2024



Codes with memory Encoding Decoding Turbo codes

Index

1 Codes with memory

2 Encoding

3 Decoding

4 Turbo codes



Codes with memory Encoding Decoding Turbo codes

Index

1 Codes with memory

2 Encoding

3 Decoding

4 Turbo codes



Codes with memory Encoding Decoding Turbo codes

Linear block codes v. convolutional codes

A few (related) differences...

Convolutional codes Linear block codes

• Encoding is continuous • Encoding is blockwise
• System has memory • System has no memory
• Sequence-to-sequence mapping • Message-to-codeword mapping

In both schemes, every operation (e.g., convolution) is in GF (2).



Codes with memory Encoding Decoding Turbo codes

Specification

Codes are often specified through a block diagram that illustrates
how the input is transformed into the output, e.g.

B
( )0

[ ]l

C
(0)

[ ]l

D D D

C
(1)

[ ]l

B(j)[l ] is the l-th bit of the
j-th input

C (j)[l ] is the l-th bit of the
j-th output

D is a delay element

The output bits depend on previous (and current) inputs: this is
a state machine

The system has memory



Codes with memory Encoding Decoding Turbo codes

Specification: equations

B
( )0

[ ]l

B l
( )1

[ ]

C
(0)

[ ]l

C
(1)

[ ]l

C
(2)

[ ]l

D

D

Connection between the inputs and the outputs

C (0)[l ] = B(0)[l ] + B(0)[l − 1] + B(1)[l − 1]

C (1)[l ] = B(0)[l − 1] + B(1)[l ]

C (2)[l ] = B(0)[l − 1] + B(1)[l ]

we express this relations in the D domain...



Codes with memory Encoding Decoding Turbo codes

Convolution

...but, where is the convolution in a convolutional code?

x [n] ∗ h[n] = h[n] ∗ x [n] =
∞∑

k=−∞
h[k]x [n − k]

and assuming the impulse response, h[k], is non-zero between time
instants, e.g., 0 and 1

= h[0]x [n] + h[1]x [n − 1]

Convolution of discrete-time signals

For the first output, e.g., we have

C (0)[l ] = B(0)[l ] + B(0)[l − 1]︸ ︷︷ ︸
B(0)[l ]∗

[
1 1

] + B(1)[l − 1]︸ ︷︷ ︸
B(1)[l ]∗

[
0 1

]
Every output is a sum of convolutions!!



Codes with memory Encoding Decoding Turbo codes

D transform

Definition: The D transform...

...of a binary sequence B(i)[l ] is

B(i)(D) =
∑
u

B(i)[u] · Du

= · · ·B(i)[−1] · D−1 + B(i)[0] + B(i)[1] · D1 + · · ·

...and we write B(i)[l ]
D←−→ B(i)(D)

with the property

B(i)[l − d ]↔ B(i)(D) · Dd

so that, e.g.,

B(i)[l ] + B(i)[l − 1] + B(i)[l − 2] + B(i)[l − 3]
D←−→ B(i)(D)(1 + D + D2 + D3).



Codes with memory Encoding Decoding Turbo codes

Generator matrix

B
( )0

[ ]l

B l
( )1

[ ]

C
(0)

[ ]l

C
(1)

[ ]l

C
(2)

[ ]l

D

D

In polynomial form

C (0)(D) = (1 + D)B(0)(D) + DB(1)(D)

C (1)(D) = DB(0)(D) + B(1)(D)

C (2)(D) = DB(0)(D) + B(1)(D)

Using matrices: C(D) = B(D)G(D), with

C(D) =
[
C (0)(D) C (1)(D) C (2)(D)

]
B(D) =

[
B(0)(D) B(1)(D)

]
G(D) =

[
1 + D D D
D 1 1

]
k×n

G ≡ generator matrix
gij ≡ contribution of the i-th input
to the j-th output



Codes with memory Encoding Decoding Turbo codes

Definitions

Definition: Overall memory...

...of the code, Mt , is the numer of delay units in the coding scheme.

Mt =
k−1∑
i=0

M(i)

with
M(i) = max

j
degree (gij(D)) ≡ memory i-th input

Definition: Constraint length

...of the code, K , is the maximum length of the impulse response,

K = 1 + max
i,j

degree (gij(D))

A convolutional code can also be systematic (same definition).



Codes with memory Encoding Decoding Turbo codes

The encoder as a finite-state machine

B
( )0

[ ]l

C
(0)

[ ]l

D D D

C
(1)

[ ]l

The state of the encoder is given by the bits stored (yielded
as output) in the delay elements, here

Ψ ≡ (B(0)[l − 1],B(0)[l − 2],B(0)[l − 3]).

In general there are 2Mt possible states (bits from delay
elements across all the inputs are stacked together). A
possible mapping here:

Ψ0 → (0, 0, 0) Ψ1 → (1, 0, 0) Ψ2 → (0, 1, 0) Ψ3 → (1, 1, 0)

Ψ4 → (0, 0, 1) Ψ5 → (1, 0, 1) Ψ6 → (0, 1, 1) Ψ7 → (1, 1, 1)



Codes with memory Encoding Decoding Turbo codes

State transition I

+ C (1)[l ]

B(1)[l ] D D + C (2)[l ]

B(2)[l ] D D + C (3)[l ]

+ C (4)[l ]

Let us take a look at the evolution of the state of the system for a
simple example...

l −2 −1 0 +1

B(1)[l ] 0 0 1 1

B(2)[l ] 0 0 0 1
previous bits bits to be encoded



Codes with memory Encoding Decoding Turbo codes

State transition II

B(1)[0] D D

B(2)[0] D D

0 0

0 0

Initial state:
Ψ = [0, 0, 0, 0, ]

1 D D

0 D D

0 0

0 0

Ψ = [0, 0, 0, 0, ]
B(1)[0] = 1

B(2)[0] = 0

1 D D

1 D D

1 0

0 0

Ψ = [1, 0, 0, 0, ]
B(1)[1] = 1

B(2)[1] = 1

· · · D D

· · · D D

1 1

1 0

Ψ = [1, 1, 1, 0, ]
B(1)[1] = · · ·
B(2)[1] = · · ·



Codes with memory Encoding Decoding Turbo codes

State diagram

ψ1

ψ4

ψ2ψ0 1/00

0/11

0/01

1/11

0/11

0/00

ψ3

ψ6

ψ7ψ5 0/10

1/01

0/01

1/11

1/01

1/10

1/00

1/10

0/00

0/10

Every arrow is labeled with

the input bits triggering that transition, and

the output bits originating from that state given the
corresponding input bits.



Codes with memory Encoding Decoding Turbo codes

Index

1 Codes with memory

2 Encoding

3 Decoding

4 Turbo codes



Codes with memory Encoding Decoding Turbo codes

Encoding

Straightforward once we know

the initial state

the state diagram

Let us assume we start from state Ψ0 and we want to encode the
sequence [001]. The result is

[00 00 11]

Example

After the information sequence, a header is transmitted to force
the encoder to go back to its initial state.

information header

Header



Codes with memory Encoding Decoding Turbo codes

Index

1 Codes with memory

2 Encoding

3 Decoding

4 Turbo codes



Codes with memory Encoding Decoding Turbo codes

Decoding

Hard

B
Digital
channel B̂

Metric: Hamming distance

Soft

A
Gaussian
channel

q

Metric: Euclidean distance
(at every step, squared
difference)

In both cases:

the goal is to find the full sequence most likely transmitted

the solution is given by the Viterbi algorithm



Codes with memory Encoding Decoding Turbo codes

Viterbi algorithm

Some keys

We need to assess all the trajectories starting a the initial
state (usually Ψ0).

For every possible transition, we compare its corresponding
output with the observed one.

At every time instant, for every possible state, we need to find
the path reaching it with the smallest accumulated cost.

Whenever two paths reach the same state, we keep the one
with the smallest accumulated cost.

Decoding must end up in the initial state since a header is
appended to every transmitted sequence in order to enforce
this.



Codes with memory Encoding Decoding Turbo codes

Error-free example

Input sequence: 1 1 0 1 0 1 0 0

Received sequence: 11 10 10 00 01 00 01 11

1

2

30

0/01

1/00

1/10

0/10

1/11

0/11

1/010/00

1|01

0|10

1|00

0|11

1|10

0|01

1|11

0|00

ψ3 = [1, 1]

ψ2 = [0, 1]

ψ1 = [1, 0]

ψ0 = [0, 0]

( Trellis representation )



Codes with memory Encoding Decoding Turbo codes

Error-free example

Two first iterations

1|01

0|10

1|00

0|11

1|10

0|01

1|11

0|00

ψ3 = [1, 1]

ψ2 = [0, 1]

ψ1 = [1, 0]

ψ0 = [0, 0]

ψ1

ψ2

ψ3

ψ0 0

0

2

0

2

3

3
2 1

10

2

0

11 10 10 00 01 00 01 11



Codes with memory Encoding Decoding Turbo codes

Error-free example

Third iteration

1|01

0|10

1|00

0|11

1|10

0|01

1|11

0|00

ψ3 = [1, 1]

ψ2 = [0, 1]

ψ1 = [1, 0]

ψ0 = [0, 0]

ψ1

ψ2

ψ3

ψ0 0

0

2

0

2

3

3

11 10 10 00 01 00 01 11

+1

+1

+2

+1
+1

+0

+2

+0

2

0

3

3



Codes with memory Encoding Decoding Turbo codes

Error-free example

Final result

1

ψ2

ψ3

ψ0 0

0

2

0

2

3

3

11 10 10 00 01 00 01 11

2

0

3

3

3

3

0

2

2

0

3

3

0

3 0

3

3

0

2

ψ



Codes with memory Encoding Decoding Turbo codes

Example with errors

Received sequence: 10 10 10 01 01 01 01 11

Final result

ψ1

ψ2

ψ3

ψ0 0

1

1

1

3

2

2

10 10 10 01 01 01 01 11

2

1

3

3

2

3

2

2

2

2

3

3

3

4 3

2

3

3

3

The states sequence Ψ0Ψ1Ψ3Ψ2Ψ1Ψ2Ψ1Ψ2Ψ0 is associated
with the input sequence 11010100



Codes with memory Encoding Decoding Turbo codes

Performance

Soft decoding

Pe ≈ κ2Q

(√
2DminEs

N0

)

where κ2 is the number of bit errors (in the decoded
sequence) caused by the sequence associated with Dmin.

Hard decoding

Pe ≈ κ2
nz∑

i=b(Dmin−1)/2c+1

(
nz

i

)
εi (1− ε)nz−i

where z is the length of the trajectory associated with Dmin

and ε is the bit error probability.



Codes with memory Encoding Decoding Turbo codes

Finding the minimum distance Dmin

A convolutional code is linear, and hence the encoded sequence
that is closest to the all-zeros sequence determines Dmin.

Goal

We seek the sequence of states (path) that starts at the all-zeros
sequence and goes back to it with the smallest accumulated cost.

1|01

0|10

1|00

0|11

1|10

0|01

1|11

0|00

ψ3 = [1, 1]

ψ2 = [0, 1]

ψ1 = [1, 0]

ψ0 = [0, 0] 0

2

3

3

5

3

4

4

5

4

4

4

5

4

5

5

5

5

5

5

ψ0

ψ1

ψ2

ψ3

Dmin allows computing the remaining parameters that have an
impact on the performance

Dmin = 5⇒

{
κ2 = 1

z = 3



Codes with memory Encoding Decoding Turbo codes

Soft decoding

For the sake of simplicity, let us assume antipodal modulation i.e.,
A[l ] = ±A.

Notation

B0,: = {B[0],B[1],B[2], · · · } ≡ input bits

q0,: = {q[0], q[1], q[2], · · · } ≡ soft estimates

2 possibilities

Sequence soft decoding: it minimizes the sequence error
probability

B̂0,: = arg max
B0,:

p(q0,:|B0,:)

Bitwise soft decoding: it minimizes the bit error probability

B̂[i ] = arg max
B[i ]

p(B[i ]|q0,:), i = 0, 1, · · ·



Codes with memory Encoding Decoding Turbo codes

Sequence soft decoding

ML rule ≡ MAP rule

B̂0,: = arg max
B0,:

p(q0,:|B0,:) = arg max
B0,:

∏
l

p(q[l ]|B[l ])

= arg min
B0,:

∑
l

− log p(q[l ]|B[l ])

where

p(q[l ]|B[l ]) =
1√

2πσ2
exp

(
−(q[l ]− A[l ])2

2σ2

)
.

Implemented by means of the Viterbi algorithm



Codes with memory Encoding Decoding Turbo codes

Bitwise soft decoding

MAP rule

We apply the maximum a posteriori (MAP) rule at the bit level to
compute

P(B[l ] = 1|q0,:)

and we decide

B̂[l ] =

{
1 if p(B[l ] = 1|q0,:) > P(B[l ] = 0|q0,:)
0 otherwise

Implemented by means of BCJR (Bahl, Cocke, Jelinek and Raviv)
algorithm



Codes with memory Encoding Decoding Turbo codes

Index

1 Codes with memory

2 Encoding

3 Decoding

4 Turbo codes



Codes with memory Encoding Decoding Turbo codes

Turbo codes

They are built by composing two convolutional codes that
operate over bits ordered differently.

Main elements:

2 convolutional codes
bit interleaver

B[0], · · · , B[K − 1]

Systematic
convolutional

code # 1
R = 1/2

bits
interleaver

Systematic
convolutional

code # 2
R = 1/2

C [0]

=

B[0]

, C [1]

=

B[1]

, · · · , C [K − 1]

=

B[K−1]

C [K ], C [K +
1], · · · , C [2K − 1]

C [2K ], C [2K +
1], · · · , C [3K − 1]



Codes with memory Encoding Decoding Turbo codes

Remarks

The interleaver is used to increase the memory of the system
without increasing the decoding complexity.

Good performance in the low-SNR region (at about 0.7 dBs
from Shannon limit).

Regarding decoding...

It is iterative since the decoding of the original sequence and
the shuffled one must agree.
Relies on BCJR algorithm.


	Codes with memory
	

	Encoding
	

	Decoding
	

	Turbo codes
	


