Channel coding

Convolutional codes

Manuel A. Vazquez
Jose Miguel Leiva
Joaquin Miguez

March 4, 2024

@ Codes with memory

© Encoding

© Decoding

@ Turbo codes

Codes with memory
[]

Index

@ Codes with memory

Codes with memory
00000000000

Linear block codes v. convolutional codes

A few (related) differences...

Convolutional codes Linear block codes

e Encoding is continuous e Encoding is blockwise
e System has memory e System has no memory
e Sequence-to-sequence mapping | e Message-to-codeword mapping

In both schemes, every operation (e.g., convolution) is in GF(2).

Codes with memory

0@000000000

Specification

Codes are often specified through a block diagram that illustrates
how the input is transformed into the output, e.g.

c’m @ BU)[]] is the I-th bit of the
J-th input

e CU)[/] is the I-th bit of the
J-th output

° @ is a delay element

&The system has memory

The output bits depend on previous (and current) inputs: this is
a state machine

Codes with memory
00e00000000

Specification: equations

B"[1]

@ Connection between the inputs and the outputs

cOm =BOM+BOU -1+ BY[I-1]
c® = BO[- 1]+ BY[)
cAm = BO[— 1]+ BY[)

@ we express this relations in the D domain...

Codes with memory
000e0000000

Convolution

...but, where is the convolution in a convolutional code?

(§) Convolution of discrete-time signals

[e.9]

x[n] hn] = hln] = x[n] = > h[k]x[n —]

k=—o00

and assuming the impulse response, h[k], is non-zero between time
instants, e.g., 0 and 1

= h[0]x[n] + h[1]x[n — 1]
For the first output, e.g., we have
COM =BON+BO-1]4+ BY[—1]

~\~ ~\~

BO[1 1] BO[[0 1]

Every output is a sum of convolutions!!

Codes with memory
0000e000000

D transform

Definition: The D transform...

...of a binary sequence B[] is
BO(D) =Y BW[u]- D"

=...B0O[-1].- D7 + BO] + BO[1]- D' + - -

...and we write BO)[/] 2, B (D)

. J

with the property

BO[I — d] +» BY(D) - D9

so that, e.g.,
BN + BY[1 — 1] 4 BY[1 — 2] + BY[I — 3] «2 BO(D)(1 + D + D* + D?).

Codes with memory
00000800000

Generator matrix

@ In polynomial form
c9(D) = (1 + D)BY(D) + DBY (D)
cY(p) = DBY(D) + B (D)
c? (D) = bBO (D) + BY(D)
e Using matrices: C(D) = B(D)G(D), with
C(D)=[c9(D) cW(D) c®(D)] B(D)=[BO(D) BY(D)]
14D D D} G = generator matrix
kxn

G(D) = |: D 1 1 gjj = contribution of the i-th input
to the j-th output

Codes with memory
00000080000

Definitions

Definition: Overall memory...

...of the code, M;, is the numer of delay units in the coding scheme.

k—1

M, = Z M(f)

i=0

with
MY = max degree (g;(D)) = memory i-th input
J

. J

Definition: Constraint length

...of the code, K, is the maximum length of the impulse response,

K =1+ maxdegree (g;(D))
1)

.

A convolutional code can also be systematic (same definition).

Codes with memory
0000000e000

The encoder as a finite-state machine

@ The state of the encoder is given by the bits stored (yielded
as output) in the delay elements, here

v = (BO[—1],BO[- 2], BO[- 3)).

o In general there are 2M: possible states (bits from delay
elements across all the inputs are stacked together). A
possible mapping here:

\Vo — (0,07 0) v, — (1,0,0) Yy, — (0, 1,0) \U3 — (1, 1,0)
W, - (0,0,1) W5 —(1,0,1) We—(0,1,1) W; — (1,1,1)

Codes with memory
00000000800

State transition |

’/””””/””///,4:}——>cﬂnq

B[] D] ‘D] gﬁ cr
BA] D] D] D— O[]
c®) [

Let us take a look at the evolution of the state of the system for a
simple example...

| 2| -1 |lo +1

BO[I| o 0 1 1

B o 0 0 1
previous bits || bits to be encoded

Codes with memory
00000000080

State transition |l

0 0
(1) M1 M1
B[0] D] D] Initial state:
0 0 ¥ =0,0,0,0,
BA[o] [D}——1D] | |
10 MmO W =1[0,0,0.0.]
(o] O
0 0
o’ o 610l -
Iy M1 0 W =[10, 0
1 [o——D] b 1
0
oo] -
1
Y Y V=1,
(D}——10] A
@ @ 3(2)[1] = ...

Codes with memory
0000000000 e

State diagram

Every arrow is labeled with
@ the input bits triggering that transition, and

@ the output bits originating from that state given the
corresponding input bits.

Encoding
o

© Encoding

Encoding
[]

Encoding

Straightforward once we know
@ the initial state
@ the state diagram

Wv Example

Let us assume we start from state Wy and we want to encode the
sequence [001]. The result is

[00 00 11]

ﬁ; Header

After the information sequence, a header is transmitted to force
the encoder to go back to its initial state.

’ information H header ‘

Decoding
[]

© Decoding

Decodin
@®00000000000

Decoding

Soft
Hard :
_ A Gaussian q
Digital A channel
B — ——— B
channel

@ Metric: Euclidean distance
@ Metric: Hamming distance (at every step, squared
difference)

In both cases:
@ the goal is to find the full sequence most likely transmitted

@ the solution is given by the Viterbi algorithm

Decodin
O@0000000000

Viterbi algorithm

@ We need to assess all the trajectories starting a the initial
state (usually Wy).

@ For every possible transition, we compare its corresponding
output with the observed one.

@ At every time instant, for every possible state, we need to find
the path reaching it with the smallest accumulated cost.

@ Whenever two paths reach the same state, we keep the one
with the smallest accumulated cost.

@ Decoding must end up in the initial state since a header is
appended to every transmitted sequence in order to enforce
this.

Decodin
0O0e000000000

Error-free example

@ Input sequence: 11010100
@ Received sequence: 11 10 10 00 01 00 01 11

¥z = [1,1]
2 = [0,1]
1 =[1,0]
o = [0,0]

(Trellis representation)

Decodin
0O00@00000000

Error-free example

@ Two first iterations
v3=[11]
1o =1[0,1]

1 = [1,0]

ho = [0,0]

v o O O O

v o o O O O

v o O O O

w o O O O O O

Decodin
[ee]ele] Telelelelele]e)

Error-free example

@ Third iteration

v o O O

w’ o O O O

v o O O

% o O O O O

Decodin
[e]e]ele]e] lelelelelele)

Error-free example

@ Final result

Decodin

000000800000

Example with errors

@ Received sequence: 10 10 10 01 01 01 01 11

@ Final result

@ The states sequence VoW VW, W Wo W WsoWy s associated
with the input sequence 11010100

Decodin
0O000000e0000

Performance

@ Soft decoding

2DminE
P. ~ koQ (5)

No

where kjy is the number of bit errors (in the decoded
sequence) caused by the sequence associated with D .

@ Hard decoding
Pe ~ Ky Z <niz> e(1—e)r=i
i=|(Dmin—1)/2]+1

where z is the length of the trajectory associated with D,y
and € is the bit error probability.

Decodin
00000000 e000

Finding the minimum distance D,,;,

A convolutional code is linear, and hence the encoded sequence
that is closest to the all-zeros sequence determines D,,;,.

We seek the sequence of states (path) that starts at the all-zeros
sequence and goes back to it with the smallest accumulated cost.

vs =111

¥2 =1[0,1]

v = [1,0]

o = [0,0]

Dpin allows computing the remaining parameters that have an
impact on the performance

Decodin
000000000800

Soft decoding

For the sake of simplicity, let us assume antipodal modulation i.e.,
Alll = £A.

Bo,. = {B[0], B[1], B[2], - - - } = input bits
qo,: = {ql0], q[1], q[2], - - - } = soft estimates

2 possibilities
@ Sequence soft decoding: it minimizes the sequence error
probability .
Bo.. = arg max p(qo.:|Bo..)

o Bitwise soft decoding: it minimizes the bit error probability

é[I] = arg nB1[ai(p(B[l]|q0,)> = 07 17 o

Decodin

000000000080

Sequence soft decoding

ML rule = MAP rule

Bo,) = argmax] [p(allIBIN)
eb

Bo.. = argmax p(qo,
BO,:
= argmin > _ — log p(q[/]| B[)
0,: |

where

(gl = A[/])z)

R

Implemented by means of the Viterbi algorithm

Decodin
00000000000

Bitwise soft decoding

We apply the maximum a posteriori (MAP) rule at the bit level to
compute

P(B[/] = 1]qo,:)
and we decide

Bl = {(1) :tﬁis\fi/le: 1|g0,:) > P(B[/] = 0|qo,:)

4

Implemented by means of BCJR (Bahl, Cocke, Jelinek and Raviv)
algorithm

Turbo codes
[]

@ Turbo codes

Turbo codes
L o)

Turbo codes

@ They are built by composing two convolutional codes that
operate over bits ordered differently.
@ Main elements:

e 2 convolutional codes
e bit interleaver

clo], cli], - -+, CK — 1]
T T Y/ T l I I
| Systematic %_B)lol B[] BIK—1]
| convolutional |
B[O, --- , BIK — 1] ! e 4 1 !
! |
I
| R=1/2 S,
‘ | 1,---, C[2K — 1]
| |
! |
| Systematic | |
| bits convolutional |
! interleaver code # 2 |
: R=1/2 ' ClKk], Cl2K +

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1, -, C3K — 1]

Turbo codes
oe

RENMEIS

@ The interleaver is used to increase the memory of the system
without increasing the decoding complexity.

@ Good performance in the low-SNR region (at about 0.7 dBs
from Shannon limit).

@ Regarding decoding...

e It is iterative since the decoding of the original sequence and
the shuffled one must agree.
o Relies on BCJR algorithm.

	Codes with memory
	

	Encoding
	

	Decoding
	

	Turbo codes
	

